
February 5, 2021

PHYSICS 12b – Midterm

This exam covers all of the readings in Griffiths and the Lectures for the first four weeks of class,

through HW 4.

This is an OPEN BOOK exam with the following limitations: You may consult only your textbook

(Griffiths), notes that you have taken in recitation or lecture, online lecture notes, and HW solns

(including your own). No other references are allowed. You may use a calculator and symbolic

manipulation programs (eg. Mathematica) for integrals or algebra only - but not for graphing. In

general they are not required.

In your studies, do not look at problems or exams from previous years of Phys 2 or 12.

The time limit is 4 HOURS, in one continuous sitting. A half-hour break beyond the 4 hours is

permitted during this period, as long as you are not working on the exam during this time. No

credit for overtime work.

The MT is DUE Wednesday, Feb. 10 at 5:00PM and should be turned in via Gradescope. Late

MTs will not be accepted for credit except by prior arrangement with the TAs.

There are four problems on pages 2–4 for a total of 50 points.

The exam counts for 15% of your grade. To get partial credit, show as much work as you can!
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Problem 1 (Short-ish Problems)

(a) (3 points) Measurements of the energy spectrum of photons left over from the Big Bang

indicate that it is an excellent Black-Body with a present temperature of ∼ 2.7 K. Use the

formula derived in lecture for the spectral energy distribution u(ν, T ) of Black Body Radiation

to find the frequency where this distribution is maximized. Express your answer in MHz.

(b) (2 points) Use what you’ve learned about the property of delta functions to show that

δ(
√
x) = 0.

(c) (2 points) Estimate the deBroglie wavelength of a so-called ”thermal” neutron

(v ∼ 2200 m/s). Note: mn ∼ 1.67× 10−27 kg

(d) Answer the following TRUE or FALSE questions. If the answer is false, briefly explain why

it is false.

(i) (2 points) ∂〈T 〉
∂t

=

〈
∂T

∂t

〉
.

(ii) (2 points) If a particle is in an energy eigenstate, then I can predict with

certainty the result of a measurement of the particle’s momentum.

(iii) (2 points) For a particle in an infinite potential box, you can make an arbitrarily

precise (a.k.a. an ideal) measurement of it’s position.

(iv) (2 points) For a particle in an infinite potential box, you can make an arbitrarily

precise (a.k.a. an ideal) measurement of it’s momentum.

(v) (2 points) For a particle in an infinite potential box, you can make an arbitrarily

precise (a.k.a. an ideal) measurement of it’s energy.

(e) (4 points) A particle of massm in a 1D harmonic oscillator potential, V (x) = mω2
0x

2/2,cannot

be in a zero energy state because we would then, simultaneously, know both its position and

momentum; a violation of Heisenberg’s Uncertainty Principle (HUP). Use the HUP to

approximately estimate the ground state energy for the 1D oscillator by assuming that the

particle’s momentum and position are related by the HUP and then minimizing the total energy:

E =
p2x
2m

+mω2
0x

2/2

(f) (4 points) Use commutators to evaluate d〈x2〉/dt for a 1D free particle along x.
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Problem 2 (Phun with Phree Particles)

Consider a free particle wave packet of the form

ψ(x, 0) = Aeik0x ,
−a
2
≤ x ≤ +a

2

ψ(x, 0) = 0 , elsewhere

(a) (2 points) Determine the normalization constant A for this state.

(b) (2 points) Technically this is NOT an allowable wave function according to the postulates of

QM. Briefly explain why this is the case.

(c) (2 points) What is the ”k-space” wave function - b(k) - for this state?

(d) (2 points) Use your results from part (c) to calculate the probability distribution, as a function

of k, for measuring a particlular value of k and sketch your result. Be sure to include the scale

on the k-axis.

Now consider a different free particle wave packet - the gaussian wave packet. Recall from HW and

lecture that such a wave function broadens as a function of time. Perhaps we can observe this

broadening to Prove Quantum Mechanics.

(e) (3 points) Use the results from the second HW set (4th problem in BP2 - labeled 2.22) to

estimate the time for a regular Ping-Pong ball, m = 2.7 g, to double in size due to wave packet

broadening by assuming that the ball’s radius, r = 2 cm is equal to ∆x at t = 0. Is this an

experiment worth doing?
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Problem 3 (Relative Phase)

In lecture we commented that the overall phase of a wave function has no physical significance,

but that a relative phase between components of a superposition of states can have real physical

significance.

Consider the following one-dimensional wave function for a particle:

ψ(x) = A
[
φa(x) + eiθφb(x)

]
where φa and φb are purely real energy eigenstates with energy eigenvalues Ea and Eb respectively

and θ is a relative phase angle.

(a) (2 points) Write down an expression for the fully time-dependent probability density

ψ∗(x, t)ψ(x, t) for the cases θ = 0 and θ = π/2 in terms of φa(x), φb(x), Ea, Eb and ~.

(b) (2 points) Use your result from part (b) to predict how long you have to wait until the

initial probability density is reproduced for the first time for the two cases θ = 0 and θ = π/2.

Express this time in terms of Ea, Eb and ~. If the Prof was correct the answers should be

clearly different for the two cases.

Problem 4 (Infinite Square Well)

Consider an infinite square well where the ends of the well are at −a/2 and a/2 instead of at 0 and

a (as in Lecture or Griffiths), i.e. consider the potential

V (x) = 0 if − a

2
< x <

a

2

V (x) =∞ otherwise

This change modifies the form of the solution compared to Griffiths and what we did in Lecture.

(a) (2 points) Determine the normalized energy eigenstates for this well.

(b) (2 points) Determine energy eigenvalues for this well.

We now introduce the “parity” operator P̂ which has the property P̂ψ(x) = ψ(−x) for an abitrary

wave function ψ(x). This implies that P̂ P̂ψ(x) = P̂ψ(−x) = ψ(x). If now φP (x) is an eigenstate

of P̂ then P̂ φP (x) = αφP (x).

(c) (2 points) Use repeated operations with the P̂ operator to determine the eigenvalues of

the P̂ operator.

(d) (2 points) Show that the eigenstates from part (a) are also eignenstates of P̂ .

(e) (2 points) What are the corresponding eigenvalues of P̂ for these eigenstates?
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