2 The Two-Nucleon System

2.1 Introduction

The study of the hydrogen atom is relatively simple due the fact that the Coulomb force
between the proton and the electron is very well known. The solution of this quantum prob-
lem resulted in the determination of a group of states of energy allowed for the system,
permitting direct comparison with the measured values of the electromagnetic transitions
between those states. Ever since, there has been great progress in understanding the hydro-
gen atom and atoms with many electrons. Nowadays, there are only small discrepancies
between quantum theory and experimental data.

Nuclear systems are much more complex than atomic ones. Already the simplest case,
the system of two nucleons, has its theoretical treatment hindered by the fact that the form
of the force acting between them is not well known. In spite of that, quantum theory has
been used with success in several areas of nuclear physics. In this chapter we will make a
simple application of it to the system of two nucleons and an expression will be presented
for their interaction potential.

Two groups of experimental data exist for the system of two nucleons. A first group
arises from the study of the only bound systemn of that kind, the deuteron. composed of
a proton and a neutron. Unlike the hydrogen atom, the deuteron has only one bound
state, the ground state. Therefore, the theories for the neutron-proton interaction in the
deuteron can only be tested by comparing their predictions with the experimental values of
the energy, angular momentum, parity, magnetic dipole moment, and electric quadrupole
moment of the ground state of the deuteron.

The second group of experimental data come from the study of nucleon-nucleon scat-
tering. As it is difficult to produce a neutron beam for that goal (the neutrons have zero
charge and cannot be accelerated by means of an electric field), the experiments are lim-
ited to collisions between protons and to proton-deuteron scattering, this last supplying
indirect information on proton-neutron interaction. Comparison of the experimental data
for those collisions and the properties of the ground state of the deuteron has been useful
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for the semi-phenomenological description of the interaction between two nucleons, as
we shall see below.

2.2 Electrostatic Multipoles

Electromagnetic multipoles give one of the most important examples of tensor operators.
They appear in classical field theory as a result of the multipole expansion of the fields
created by a finite system of charges and currents. We start with the systemn of point-like
classical particles with electric charges e, located at the points r,. If you are not used to
angular momentum algebra, read Appendices A and B first.

The electrostatic potential of this system measured at the pointr is given by the Coulomb

law,

b=y — . (2.1)
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The function
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depends on the lengths r, r’ of two vectors and the angle y between them rather than on the
angles of the vectors r and r’ separately. If r # r', this function has no singularities and can
be expressed with the aid of the expansion over the infinite set of Legendre polynomials
with coefficients depending on r and r’,

Z Pi{cosy)fi(r.r'). (2.3)
[
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Using the notation r. and r.. for the smaller and greater r and r’, one can show that the
expansion (2.3) takes the form

Z i Pi(cos y). (2.4)

[r ~r‘I

The applications of the multipole expansion usually consider the potential (2.1) outside
the system, that is, at the point r with r > r,. Then we can use the expansion (2.4) and the
addition theorem (A.112) to get

4r 1
¢M“ZH+“HmWMWM) (2.5)
Here the electric multipole moment of rankl,! = 0,1, ..., is defined for a system of point-like

chargesa =1,2,..., A as a set of 2/ + 1 quantities,
M(ELm) =) earhYim(na), m=—l—l+1.....+l, (2.6)
where the sum runs over all charges e, located at r, = (75, 64, @a) = (ra, n,). Exactly in the

same way one can define, instead of the charge distribution, multipole moments for any
other property of the particles, for example, for the mass distribution, e, — m,.



In quantum theory, multipole moments are to be considered as operators acting on
the variables of the particles. Containing explicitly the spherical functions, the operator
M(E1, m) has the necessary features of the tensor operator of rank l. Introducing the charge
density operator

PR =Y eadlr — ). (2.7)
we come to a more general form of the multipole moment,
M(El.m) = [ d*r p(r)r'Yim(n). n= ; (2.8)

In this form we do not even need to make an assumption of existence of point-like con-
stituents in the system; for example, in the nucleus charged pions and other mediators of
nuclear forces are included along with the nucleons if p(r) is the total operator of electric
charge density. As expected, we can separate the geometry of multipole operators from
their dynamical origin. From any underlying structure p(r), the operator (2.8) extracts the
irreducible tensor of rank [, that is, the part with specific rotational properties.

The lowest multipole moment | = 0 is the monopole one. It determines the scalar part,
the total electric charge Ze,

1 1 1 .
MED ) = —ﬁ—;' Ze" = ﬁ /d’r p(r) = ‘/-T_”'ZC. {2.9)

The next term, | = 1, defines the vector of the dipole moment,
d=) ar = /d’r plr)r. (2.10)

Taking into account the relation (B.8) between the vectors and the spherical functions of
rank | = 1, we obtain

M(El,m) =/ :‘3; Z eulal{Na)in = ‘/ ;;d,... (2.11)

Subsequent terms of the multipole expansion determine the quadrupole (I = 2), octupole
(| = 3), hexadecapole (I = 4), and higher moments. Physical properties of the quadrupole
tensor, recall (B.12), play an important role in molecular and nuclear structure.

In a similar way one can define magnetic multipoles M(Ml, m) related to the distribution
of currents. The convection current due to orbital motion and the magnetization current
generated by the spin magnetic moments determine corresponding contributions to the
magnetic multipole moment of rank I,

. 2
MMLm) =" (g;s, ey g,‘,l,.) V(! Vi (na)). 2.12)
Here s, :

tively; g5
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momenta in units of % and the gyromagnetic ratios in the magnetons eh/(2m,c).) The
expression (2.12) vanishes for | = 0 demonstrating the absence of magnetic monopoles.
At = 1, we come to the spherical components u,,, (B.8), of the magnetic moment p,

M(M1,m) = \/g“m- (2.13)

B=) (g5 + 8l (2.14)

Higher terms determine magnetic quadrupole, | = 2, magnetic octupole, I = 3, and so on.

2.3 Magnetic Moment with Spin-orbit Coupling

The vector model described in Appendix B will be used to study the magnetic moment
with spin-orbit coupling. Let a particle with spin s move in a central field where its orbit is
characterized by an orbital momentum l. The energy of the orbit depends in general on
the mutual orientation of the quantum vectors I and s. This spin-orbit interaction is rather
weak (~ v?/c?) for electrons in atoms, although it becomes increasingly important in
heavy atoms with a large nuclear charge Z, when the electrons reach relativistic velocities,
v/c ~ aZ, where @ = e?/hc =~ 1/137 is the fine structure constant. In light atoms one can
use the Is coupling scheme when, analogously to the states |jymy;jom;) in (B.41), the
electron state [Il;ss;) is described separately by the constituent angular momenta 1 and
s. For nucleons in nuclei, the spin-orbit coupling is strong, and one has to introduce the
total angular momentum of the nucleon

j=l+s (2.15)

and use the corresponding basis of states |(Is) jj , = m).
Since the lengths of all vectors in (2.15) are fixed,

P=jg+1. B=i+1)., st=sis+1) (2.16)

(Equation 2.15) enables us to find the average mutual orientations

DI+ 1) —s(s+ 1) D Esls+ ) =1 +1)
2 ' B 2 '
Of course, the scalar quantities (2.17) are the same for all the states |(Is) jm) with different m.
The operator of magnetic moment (2.14) of a particle in a central field is given (in units
of the corresponding magneton)

-1 (i-s) (2.17)

p=g's+gl (2.18)

Using the vector model (B.51), (B.52) together with the scalar quantities (2.17), we obtain
the effective operator of the magnetic moment within the multiplet of states | jm),

w=g(j.hsh (2.19)



where the gyromagnetic ratio (Landé factor) is

:.((.i~|)) +g .((i-S))
JU+1) JU+1)

'+ +1)+ (g - g+ 1) =s(s + 1)1} (2.20)

gU.ls) =g

T3+

Aswe mentioned, the tabular value corresponds to the state withj, = j, thatis, the magnetic
moment is equal to j© = gJ.

For a free nucleon atrest [=0and j =s = % Therefore spin gyromagnetic ratios are
determined by the empirical magnetic moments j, and jz,,

g; =2i,=338 g =2n;=—382, (2.21)

(in nuclear magnetons). The spin gyromagnetic ratio is predicted by the relativistic Dirac
equation (see Appendix D) to be equal to g* = 2 for a structureless particle of spin 1 and
charge ¢ (in units of the corresponding magneton). This would lead to the spin magnetic
moment of a free particle being exactly one magneton. This is the case for the electron (or
positron) with small QED corrections of order 10~ due to vacuum polarization by virtual
electron-positron pairs. For the nucleons we see a large difference between the actual
values (2.21) and the Dirac values, g; = 2, g; = 0. This difference (anomalous magnetic
moments) is generated by strong QCD interactions responsible for the intrinsic structire
of the nucleon.

Combining the rotational properties of the tensor operators and their properties with
respect to spatial inversion (see Appendix B), we can come to important conclusions
concerning multipole moments as physical observables.

The electric charge (2.9) is a scalar invariant under inversion. The electric dipole (2.10)
changes sign as the radius vector, or any “normal” (polar) vector. The momentum p is
also a polar vector. However, the orbital angular momentum (A.3) is an axial vector; its
components do not change sign under inversion. As seen from the geometrical picture
of rotation (it does not change sense in the inverted frame), any angular momentum
including spin should be an axial vector. The scalar product of an axial vector by a polar
vector is a pseudoscalar. Similar to scalars, pseudoscalars are invariant under rotations,
but change sign under inversion. An important example of a pseudoscalar is given by the
helicity of a particle,

s (s . L), (2.22)

that is, a spin component along the direction of motion.

Thus, in addition to the tensor properties under transformations from the rotation
group, we can classify the operators O by their behavior under spatial inversion P, that
is, by their parity I1(0O), defined by the operator transformation O' = POP = 0. Acting
between the states |i) and | f) with parity I; and Iy, respectively, an operator O has the
additional selection rule

My = MO, or Al =M. (2.23)
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Table 2.1 Allowed (+) electromagnetic multipoles for quantal systems with
different values of angular momenta. The entries in parentheses are allowed
by rotational symmetry but forbidden by parity.

Spin EO MO El M1 E2 M2 E3 M3
0 ¥ - - - — - - -
1/2 + = =) + - = - =
1 ' - (-) ' ) - -
32 . = () - ) ) +

It is easy to see that the parity selection rules for electric and magnetic multipoles are
complementary (the electric multipoles sometimes are said to have natural parity),

Ex: AN=(-), Mix: AN0=(-)"", (2.24)

Therefore, the expectation values (diagonal matrix elements, f = i) are forbidden for odd
electric and even magnetic multipoles if the state has definite parity. In particular, any
system in a state of certain parity cannot have a nonzero electric dipole moment.

Table 2.1 summarizes the allowed (+) electromagnetic multipoles for quantal systems
with different values of angular momenta (spins). The entries in parentheses are allowed
by rotational symmetry but forbidden by parity. The nucleons can have electric charge and
magnetic moment; the electric dipole moment can be allowed if parity is not conserved and
the stationary states do not have certain parity. Higher imultipoles are strictly forbidden by
rotational symmetry. g

Parity conservation in strong and electromagnetic interactions meaus that the corre-
sponding Hamiltonian is invariant under inversion (genuine scalar). Then its eigenstates
can always be chosen in such a way that they have definite parity. However, this choice
is not mandatory. If some states with opposite parities have the same energy (are degen-
erate), any linear combination of them is also stationary but with no definite parity. For
example, the photon circular polarization is its helicity. The photon with the left circular
polarization has no definite parity. Under inversion this state is transformed into the state
with the right circular polarization and the same energy. Ifthe radiation from an unpolar-
ized system contains the left- and right-polarized photons with different probabilities, this
means that parity is not conserved in the transition. Similar conclusions may be drawn
from experiments with longitudinally (along the momentum) polarized particles.

2.4 Experimental Data for the Deuteron
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and the neutron join to form the deuteron, and it should be returned in the form of energy if we
want to separate the deuteron again in its constituents. This binding energy exists, with different
values, for any nucleus; it is in fact a general property imposed by the theory of the relativity to
all bound systems.

An indirect method to measure the binding energy of the deuteron is through measurement of
its atornic mass, comparing the result with the sum of the masses of the proton and the neutron.
Another method, inore direct, consists of an experimental measurement of the gamma ray energy
emitted when the neutron and the proton combine to form a bound state (n-p capture). One can
aso measure the inverse process, that is, the energy of the gamma ray necessary to break the
binding between the proton and the neutron (photo-disintegration). The first two methods supply
the more precise results and one can extract the value for the binding energy of the deuteron,

Eg = (2.22464 + 0.00005) MeV. (2.25)

(b) Angular momentum and parity. The angular momentum of the deuteron was determined as
being | = 1. coming from results of optical, radio frequency, and microwave methods.

The parity of a nuclear state cannot be measured directly. It is obtained by analyzing the con-
servation of parity of certain nuclear disintegrations. Those studies show that a wavefunction with
even parity supplies the more appropriate theoretical description for the deuteron.

(c) Magnetic dipole moment. The magnetic moment of the deuteron can be obtained as a function
of the magnetic inomen! of the ‘proton using the tmethod of magnetic resonance for a molec-
ular beam. This method measures the frequency. or quantum energy. necessary to redirect
through 180° the magnelic moment of a nucleus in a periodic magnetic field. The result of the

measurements gives the value

el tty = 0.30701218 =+ 0.00000002. (2.26)
That is,
jig = (0.857393 + 0.000001)u . (2.27)

where juy = ¢h/(2myc) is the nuclear magneton.

(d) Electric quadrupole moment. Rabbi and collaborators [Ra33] have shown that the deuteron also
has an electric quadrupole moment that makes it look like a prolate spheroid along its spin axis,
with the mean square values of the coordinates z and r of the proton obeying the ratio

2! 1.14
2 . —1. (2.28)

(r?) 3

instead of §, as it should be fora spherically symmetric distribution of charge, since (r¥) = (x?) +
{(y?) + (z%). The quadrupole moment that corresponds to that deformation has the experimental
value Q= 0.00282 barns (1 barn = 107%#m?).

(e) The radius of the deuteron. Hofstadter and collaborators [Ho62] have performed precise measure-
ments of the radius of the proton, deuteron, and coinplex nuclei. through electron scattering. They
obtained the value 2.1 fm for the mean square radius of the deuteron. The same measurement

for the proton resulted in the value of 0.8 fm.



2.5 A Square-well Model for the Deuteron

In a quanium description of the deuteron, it is reasonable to suppose that the ground state
is an S state that is, a state with zero angular momentum. With | = 0, W is spherically
symmetric and the angular momentum of the nucleus is entirely due to its spin. As the
spins of the proton and neutron are 3, and that of the deuteron is 1, this means that their
spins are parallel. In such situation, the magnetic moments would be due to a simple sum:

jad = pp + iy = 0.8797 pp. (2.29)

Comparing this result with the value given in (2.27) we see that the difference is 0.0223
un. Therefore, the maghetic moment value of the deuteron almost agrees with the sum
of the moments of the proton and of the neutron. The reason for the small difference will
be discussed later.

Similarly to that for the hydrogen atom, the Schrédinger equation for the deuteron can
be solved reducing the two-body problem to a one-body problem that has the reduced mass
of the system and whose distance from the origin is the distance between the two bodies.
In the center of mass system of the deuteron, the Schrédinger equation is

2

W
SRR - L = EV, 2.30
o VI Ve (2.30)
where
M"MP
= — 2.31
Mn + M, =3

is the reduced mass and V/(r) is the potential that describes the force between the proton
(mass Mp) and the neutron (mass M,,). The difference from the hydrogen atom is that
the nuclear potential V(r) is not well known, but, for a first approach, we shall use a very
simple form for that potential. We shall suppose initially that V is spherically symmetric,
that is, that it depends only on the separation distance between the proton and the neutron,
or, V(r) = V(r). In this case, the wavefunctions ¥, solutions of (2.30), can be separated
into radial and angular parts,

DD ‘f'-:i) Y™, ). (2.32)

f.m

where the indexes | and m admit the values
T [ RRTR R WU I (P | (2.33)

Y" (¢, ¢) is the spherical harmonic function (see Appendix A), and u; the solution of the
radial equation
d*u 2M

ﬁ+h—z[E—V(r)—

w+n1
5 ] w = 0. (2.34)
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Figure 2.1 Potential well proposed for the deuteron.

The last term inside the brackets is known as the centrifugal potential. When V(r) is neg-
ative (attractive potential), the centrifugal potentiat acts to decrease the attraction, making
the system less tightly bound. In those circumstances it is easy to see that when [ = 0 we
have a situation where the system is more bound, that is, the energy is the lowest possible;
the ground state of a spherically symmetric system is always a state with [ = 0.

The simplest potential we can imagine for the deuteron is the “tri-dimensional square-
well,” illustrated in figure 2.1. The radius R and depth Vj should be adjusted in a way to
reproduce the experimental data. In region I, for | = 0, we have, omitting the index of u,
that

du  2M
;lr_;‘ + 3 Vo~ Ealu=0, (2.35)

where the well-known experimental fact E = —Eg = —2.225 MeV is used, with Vj and Eg
positive numbers. The solution of this equation, which satisfies the boundary condition
u=0atr=20,is

up = A sin (Kr), (2.36)

where A is a normalization constant and

K= ':“\/ZM(VQ ~ Eg). (2.37)

In region II the radial equation assumes the form

d’u  2M
F - 755“ =0, (238)

whose solution, which satisfies the boundary condition u = Q0 at r = 00, is
uy = Be ™, (2.39)

where B is a normalization constant and

k= E\/ZMEB. (2.40)

h



40 | Chapter 2

104, (@) 104, ()
05— 0.5 -
VO / EB
0 T T T 1 0 T T il
10 20 30 \o / 3 4
-0.5 - 0.5 -

Figure 2.2 One way of solving an equation like (2.43) is 10 find graphically the roots of the function
f = Kcot(KR) + k. In (a) f is plotted as a function of the depth Vg of the deuteron potential, using
Eg = 2.225 MeV. The function has a root for Vp = 34 MeV. Using this value of Vp in (b), the same
function is plotted against the binding energy Ep, showing that there is no other solution besides the
previous one.

The solutions (2.36) and (2.39) should match at r = R so that both the function u and its
derivative are continuous at that point, That is also the only way to satisfy the Schrodinger
equation at that point. Those conditions imply that

AK cos (KR) = —kBe 'R, (2.41)

A sin (KR) = Be *F. (2.42)
Dividing (2.41) by (2.42), we find
K cot(KR) = —k. (2.43)

Equation (2.43) implicitly relates the binding energy Ejp to the width R and depth V; of
the potential. As Eg is measured experimentally, (2.43) gives us a relationship between the
unknown parameters Vj and R. If we use R = 2.1 fm, the “electromagnetic radius” of the
deuteron obtained in the measurement of Hofstadter with electron scattering, (2.43) for
Vo can be solved numerically or graphically (figure 2.2a), yielding a value V, = 34 MeV
for the depth of the well for the deuteron. If, inversely, we use the value of V, in 2.43 we
can see (figure 2.2b) that it does not have a solution for any other value of Eg. We conclude
that there are no excited states for [ = 0. For [ > 0, the centrifugal potential mhibits even
more the formation of a bound state. The nuclear potential would have to be deeper so
that the binding is not broken by the centrifugal force.

An important experimental fact is that the total angular momentum of the deuteron is
J = 1. 1f the assumption of a | = 0 state is correct, it is certain that the intrinsic spin of the
deuteron is S = 1 (the proton and the neutron with parallel spin vectors). In spectroscopic
terminology, this is known as a triplet state, denoted by *S;, where the upper index is the
same as 25 + 1and the lower index is the value of J. If the nuclear forces were independent



of the spin, we would observe a singlet state, ' Sy, with the same energy, and that is not
the case. In fact, no state with | = 0 for the deuteron has been found experimentally,
indicating that the neutron-proton force is stronger when the spins are parallel than when
they are antiparallel. These forces will be studied in detail later.

2.6 The Deuteron Wavefunction

The fact that the quadrupole moment of the deuteron is different from zero and that
the magnetic moment of the deuteron is not the sum of the magnetic moments of the
proton and of the neutron indicates that the deuteron cannot have a spherically symmetric
wavefunction as in the case of a *S, state.

We can discover the nature of the ground state wavefunction of the deuteron using
the information that it has a definite parity, and that | = 1. The possible states of orbital
angular momentum [ and spin S are

I=0 §=1 -,
I=t S=0— P,
I=1 S=1 - ’p,
=2 S=1 - D,

Therefore, the deuteron wavefunction can only be a combination of the *S; and iD, states
(even parity) or a combination of the Py and *P, states (odd parity). We should verify which
of those combinations represents better the ground state wavefunction of the deuteron
with the observed properties.

To build the wavefunction it will be necessary to consider that it is an eigenfunction of
the total angular momentum of the system, which is obtained by the addition (coupling)
of three vectors, the spins of each nucleon and the orbital angular momentum. At this
point it is good to recall how one obtains the wavefunction resulting from the coupling of
two angular momenta. For more details, see Appendix B.

2.6.1 Angular momentum coupling

Let us imagine two independent systems, without interaction, where the wavefunctions
| jymy) and | jym;) describe the behavior of each system. with respective angular momenta

ji and j,. In this case,
jf I-j”"l) =j|(j’ + ]) rj'ml)- jl: Ij]'"l) =m |j|m1), (24_4)

with identical expressions for the ket 2.

! Using the Dirac notation, W~ = (¥(isa braand W = (¥) is a kel.
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Little will change if we include the kets | jym,;) and | j,m;) in a single ket
Lijzmimz) = |jimy) | amy). (2.45)
for which the relationships
JEUjjzmima) =i + 1) |jijamima), et (2.46)

are valid.

Let us now place the two systems in interaction. j; and j, will not be constants of motion
any more, but will precess around the total angular momentum j = j; + j,. The possible
vatues of j will be | j; — 2|, |ji —j21 + 1.....ji +j2. The projections m, and m, will not
be good quantum numbers any more, but the projection m = m; + m; will be, so that
the wavefunction adequate to the description of the system can be represented by the ket
|jujajm).

The wavefunction (2.46) that describes the two joint systems without interaction is no
longer valid in the present case. However, it does form a basis in which the wavefunction
with interaction can be expanded. Thus,

Ljrjzjm) = ) Guzmimy | jm) | juamimy) (247)
my.my
is the proper expansion, where the sum on m, and m; reduces to a single sum, if we take
in consideration that m; + m; = m. The quantities

(Juamimy | jm) (2.48)

are denominated Clebsh-Gordan coefficients, and they can be obtained from the algebra of
angular momenta. The coefficients are also found in tables where the input data are the
six values that appear in (2.48).

2.6.2 Two particles of spin ;

Before proceeding to general theory let us consider a simple important example of two
particles of spin 1. s; =5, = }. The single-particle spinors x,, m = %3, are studied in
Appendix A. Two states of each particle give rise to four states x,,(1) x(2) of the repre-
sentation (B.25). Now we can explicitly proceed along the line sketched in the preceding
subsection.

According to our rules, the vector coupling of two spins defines two multiplets, triplet
and singlet, with the values of the total spin § = s, + s, equal to 1 (three states, S, = %1, 0)
and O (one state S, = 0), respectively. The highest, M = 1 and the lowest, M = —1, states
(B.27) belonging to the triplet are constructed uniquely from the corners of the diagram,

li' %;11} = X 1)+ 2). [% %;1 - 1) = x-()x- ). (2.49)



of (B.34), the triplet combination with S, = 0,

1
10) = 75()(4 (Nx-2) + x-(Dx+(2))- (2.50)

The orthogonal combination with S. = 0, (B.35),

1
100) = —= (x4 ()X 2) = x- (Wx- 2)) (2.51)

belongs to the singlet S = 0.

Note that all three triplet states, (2.49) and (2.50), are symmetric with respect to inter-
change of spins 1 < 2, whereas the singlet state (2.51) is antisymmetric. We show in
Appendix B, in relation to parity and in decomposition of the second rank tensor, that the
intrinsic symmetry given by an operation commuting with rotations should be the same
for all members of the multiplet. Let the spin exchange operator P” interchange the spin
variables of the pair. Then it can be expressed via the total spin S of the pair,

P =(-)%. (2.52)
The alternative expression can be derived in terms of the Pauli spin operators (A.82),

o = 2s. Using

2

) s S
(01 -03) = 4(s: - 52) =4~s—"'2£2-. (2.53)

and replacing the angular momentum squares by their eigenvalues, we get

—3(S =0, singlet),

. =25(S+1)—3= 2.54

o) =255+ 1) +1(S =1, triplet). (254
Therefore the exchange operator (2.52) can be written as

pr o LHlo10y) (2.55)

2

The spin wavefunctions. x¢°. should now be coupled to the eigenfunctions of orbital
angular momentum, Y;", to obtain the angular part ) of the total wavefunction. Based on
(2.47) we can write

J’,‘}‘_, = Z (ISmyms | JM)xJ"* Y™, (2.56)

my.ny

2.6.3 Total wavefunction

The ground state of the deuteron has | = 1. Thus, only the four states calculated below
will be considered:
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31 J=1,M=1,1=0,and S=1
Vo = (0101 | 11) Y (1)a(2) = Yoa(l)a(2); (2.57)
where we define
+1/2 ~-1/2

X122 =« and XiZ2 =8. (2.58)

D J=1.M=1,l=2,and S=1

¥ _2(21(l—ms)m5|11) Y3y

=3/5 Y;8(1)8(2) - /3/10 Y} J-la(l)ﬂ(z) + B(1)e(2)]
+ 1710 Ya(1)a(2);
Ip: J=1,M=11l=1,and $=0
Y, %mu)ﬂ(zy —a(2)B(1)); (2.59)
AP J=1LM=1l=1andS=1

Vi = (1010 | 11)Y] x¢ =

Vin = ) _(11(1 —mg)mg | 11) Y] ™™ x ™

ms

f (a(lmm + (1) (2)) — ﬁ Yle(1)8(2).

For the deuteron, let us make the index 1 in a and 8 to correspond to the proton and
the index 2 to the neutron. We can write the wavefunction W,sj(r x) for the four cases
discussed in terms of the radial wavefunctions w(r), where I refers to the orbital angular

momentum:
35,0 ws =), = ““("y(m = “°"’ Yox!: (2.60)
D1t Wp =Wy, = “’r(')yz'u - i‘}ri’l [‘/g_ Yix — J% Y x? + \/—1% Yi’xl']: (2.61)
Py : Wip=wl, = 2 (" iyl - B (" A y1xo (2.62)
P W=y, = uleyllu = ulT(r) [% Yix - ﬁ Y; XI] (2.63)

Noticing that in the center of mass system the orbital angular momentum associated to
the proton is half of the relative orbital momentum, I, = }I, gives z-component of the
magnetic moment of the deuteron:
1 =4 =3
He = Sk + gpS; +EaS (2.64)
in units of uy, the nuclear magneton, with g, = 5.58 and g, = —3.82.



The magnetic moment of the deuteron is defined as

Uy 177}
r ISJ)' (2.65)

“‘( 1) 14z ""ls;) (, is)

If we take into consideration that (in units of %)

Kz

lelm = mY‘m. ‘2-66)
and that
1 = 1
Sa =30 S =31
1 1
Sf,x?:i)(& SﬁX?“—EX(?.
_ 1 T 1 _
S;XII—‘EXI l 5nX1‘—“5X1 y
1 1
SpX = 51" SaXo =—3Xi-
we obtain
1 :‘l_ F 1 YU ) B 2.6
HVon = Z(GP +8) Vo1 = 2(89 +gn)Yo Xy (2.67)
ﬂzy%n:\/;(l i )YZXI ~3 ﬁYzl[Xl + (8 — Bu)xn] + 0 2 Yixi: (2.68)
1
Vi =30 [x0 + @ —gxi]: (2.69)
Y = [lel +8(Y X0 — Y'xi) —galYixo + Yx)]- (2.70)

Using the orthonormality of Y™ and of the x¢*, we obtain the expected values

Syt (Wi s | W = 228 g [ ud(r) dr = &2 Zg“ — 0.88uy; (2.71)
0

-
Dz (Wg | s | Wgyy) = [' - '(EP +&n) ]f u3(r) dr
0
i 1
2 " 3Bt B =03luy (2.72)

1 x
(Wm, | pz | \le) = I_l,/(, uf(r) dr =05un: (2.73)

1 1 =
HW e ) W) = [; + ;(gp+g..)]f ui(r) dr
0
1 1
= Z + Z(gp + gn) = 0.69[.‘N. (2.74)

The experimental value of the magnetic moment of the deuteron is 0.8573 uy, different
from all values found above. Thus, the deuteron cannot be found exclusively in any of
the states mentioned previously. In order for the magnetic moment to be equal to the
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experimental value, one is forced to conclude that the ground state of the deuteron should
be a mixture of these states. Therefore, we construct the possible mixtures of states of
same parity,

W = CsWs + Cp¥p (2.75)
or

W= CiiWip + Crpp. (2.76)
and the normalization condition (¥ | ¥) = 1 gives

Cky Ch=1 (2.77)
or

CltChy=1. (2.78)

From (2.71), (2.72), and (2.75) we find
1 3
(W1 |95 (go + g.)Cé + [; -3 +gn)] C} = (0.88C% + 0.31Ch)jun. (2.79)

1fwe make (W | ji. | W) equal to the experimental value 0.85573 .y, we obtain C2 = 0.96
and C% =0.04. On the other hand, a mixture of ' P; and P, states cannot take us to the
experimental value of 4 since in both states the magnetic moment is smaller than p4. We
should conclude that the ground state of the deuteron is basically (96%) a *S; state, with a
small (4%) contribution of the * D, state. Therefore, the wavefunction of the deuteron can
be written as

1 u
Wy = Cs— Yoy, + o= Wiy (2.80)

Identical results can be obtained by analysis of the electric quadrupole moment.

2.7 Particles in the Continuum: Scattering

When a wave of any type hits a small obstacle, secondary waves (circular or spherical) are
produced and move away from it, going to infinity. In the same way, a monoenergetic beam
of particles, which can be represented by a plane wave, undergoes scattering when it finds
a region in which there exists a potential V(r) created by a nucleus (figure 2.3). Unlike the
quantum bound state problem, where one searches for the possible values of the energy of
the system, the solution of scattering problems consists in finding the angular distribution
of the scattered particles, where the total energy of the system target+projectile can have
any positive value.

The angular distribution is determined by the probability of finding the scattered par-
ticles as a function of the scattering direction, and this probability is directly connected
to the wavefunctions. Thus, given an incident plane wave, whose stationary part can be
represented by

Wi(r) = %" =¢*2, (2.81)
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Plane wave

Figure 2.3 Scaltering of a plane wave by a potential V(r) limited to a small region of space,

and a scattering potential V(r), our problem reduces to finding the wavefunction of the
scattered particles, or the scattered wavefunction.

In problems of atomic and nuclear physics the detectors lie far away from the scattering
centers compared to their dimensions, that is, they are in a region where the particles no
longer feel the action of the potential. Thus, our interest will be limited to the asymptotic
part of the scattered wavefunction, namely, its form when r — oo. When a short range
potential V(r), supposed for simplicity to be spherically symmetric, acts on the particles
of an incident beam, a detector placed in the asymptotic region will register not only the
presence of the plane wave but also the particles scattered by the potential. That is, to the
plane wave will be added an outgoing spherical wave created by the scattering center, and
we can write the wavefunction far from this center as

_ pikr

v ~e* + f(A) — (2.82)
where the symbol ~ means asymptotic value. The presence of the function f (¢#) expresses
the fact that the scattering directions do not have not the same probability. This function
is called scattering amplitude and has, as we will see next, an essential role in the theory for
the process.

The probability current,

. _h i
j= —Im(¥°VW), (2.83)

will be now employed in the definition of a function that measures the angular distribution
of the particles scattered by V(r). The current for the incident plane wave is

. _h ik @ ikz)_hk__
Ji=—lm (e B | =R (2.84)
and for the outgoing spherical wave

h —ikr ikr )
jo~ —Im [f 0 [f (H)i—“ = SO (285)

r or r
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Figure 2.4 Quantities used in the definition of the differential cross section.

We define the differential cross section, a function of the angle ¢ (see figure 2.4), by

da dN/d2
—_— = A 2.86
a2 nd ( )

dN being the number of observed events in dQ per unit time, n the number of target
scattering centers comprised by the beam, and @ the incident lux (number of incident
particles per unit area and per unit time). dQ = 2xsinf df is the solid angle located
between the cones defined by the directions # and # + d#. If our assumption of spherical
symmelry for the scatter potential is not valid, the solid angle is the one defined by the
direction 6, ¢, namely, dQ2 = sinf#d@de.

Definition (2.86) is a general one, and the observed events, in the present case, are particles
scattered by the potential V(r). do/dS2 has the dimension of area, and its value is obtained
from

do !

S _;_ (2.87)
by the fact that the number of particles that cross a given area per unit time is measured
by the probability current flux through that area. With (2.84) and (2.85) it is clear that

do _ 2
o = e (2.88)

being thus the determination of the angular distribution reduced to the evaluation of the
scattering amplitude f (#).

The total cross section is obtained by integrating (2.88):

a g dQQ = 2 ,’H lJ H)ll d{cosH (2.89)

] _— = \H), 2
aQ gy ( )

and its meaning is obvious from (2.86): the total cross section measures the number of
events per target nucleus per unit time divided by the incident flux defined above. It must
include, in this way, events for which we cannot define a differential cross section, such
as the absorption of particles from the incident beam by the nucleus.
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2.8 Partial Wave Expansion

When we study interactions governed by a central potential V(r), solutions of the
Schrodinger equation
7V + ghlf [E-v()]¥=0 (2.90)

can be written as linear combinations of products of solutions separated into radial and
angular parts:

V=Y am “'5" Y0, ¢). (2.91)
I.ne

where u;(r) obeys the radial equation

du  2m| KAl +1)
F??[E—V(f)—mT u=0 (292)

and the boundary condition
w(0) = 0. (2.93)

The axial symmetry of our problem allows to eliminate the dependence in ¢ of (2.91) so
that

w(r)

- (2.94)

¥ = Za,P;(cns )
l
where the constant k = v/2mE /h was introduced to make easier later applications of the
expansion.

The terms of (2.94) can be understood as partial waves from which the general solution ¥
can be constructed. An expression like (2.94) is convenient: if V(r) is spherically symmetric,
the angular momentum is a constant of motion, and states of different values of the angular
momentum contribute in an independent way to the scattering. Thus, it is also useful to
present the plane wave by an expansion in Legendre polynomials

et = b = N 21+ 1)ilji(kr) Pi{ cos 8), (2.95)
=0

where ji(x) are spherical Bessel functions and P;(cos 6) the Legendre polynomials.

Expression (2.95) has the form of (2.94). This means that the plane wave e“*
understood as the sum of a set of partial waves, each one with orbital angular momentum
JIl+ 1) h. The terms ji(kr) Pi(cos #) specify the radial and angular dependence of the
partial wave [, the weight of the contribution of each term being given by the amplitude
2l + 1 and the phase factor i'.

Using classical arguments we can give an interpretation to this amplitude value. Let

can be

us consider a surface normal to the plane wave propagation direction, and imagine a set
of circles of radius by = Ix, with the wavelength X = A/2m = 1/k. centered at the point
where the z-axis crosses the surface (see figure 2.5). If the beam of particles moves along
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Figure 2.5 Classical representation of a plane wave: to each partial wave
! carresponds an impact parameter b.

the z-axis, the classical angular momentum of a particle about the origin of the coordinate
systern is the product of the impact parameter b and the linear momentum p = hk. Hence,
all particles that pass by a ring of internal radius b; and external radius b;,; will have orbital
angular momentum between IAhk = thand (I + 1)Ahk = (I + 1)h. In the classical limit | is
largeand! + 1 = L. So we can say that all the particles that pass through the ring have orbital
angular momentum th. However, still using classical reasoning, a particle belonging to a
uniforrn beam can have any impact parameter, and its probability of passing one of the
rings is proportional to the area A of that ring:

A=m(bh, ~b)=al [+ 1) - P]=a%@ +1). (2.96)

We see that 21 + 1 is the relative probability that a particle in a uniform beam has an orbital
angular momentum [k, which is the classical limit for the orbital angular momentum
JI{I + 1) associated to the partial wave 1.

At large distances from the origin the spherical Bessel functions reduce to the simple

expression
) sin (kr — '-_;’) pitkr=12) _ —ifkr-12)
L kr 2ikr (2.97)
Using (2.97) in (2.95) results in
A itk T ¥ IS
kronsyt 1 ") : g‘“" "} ) — e-'l(’sr- T
e = z:; (21 + 1)i' Py cost) = . (2.98)

which represents the asymptotic form of a plane wave.

In (2.98) the first term in the brackets corresponds to an outgoing spherical wave and the
second to an incoming spherical wave. Thus, each partial wave in (2.98) is, atlarge distances
from the origin, a superposition of two spherical waves, namely, the incoming and the
outgoing components. The total radial flux for the wavefunction W; = ¢ “** vanishes,



since the number of free particles that enter a region is the same as the number that exit.
This can be easily shown using (2.98) in (2.83) (exercise 9 proposes this demonstration for
the more general expression 2.99).

Let us now understand ¥ in (2.94) as a solution of a scattering problem, the scattering
being caused by a potential V(r). The asymptotic form of W can be obtained if we observe
that the presence of the potential has the effect of causing a perturbation in the outgoing
part of the plane wave, and such a perturbation can be represented by a unitary module
function, S;(k).

From (2.98), this leads to

1 x do S’(k)eukr—'-;-) _e—i(kr~'~;’-]
¥y 'g (21 + 1)i' Py(cos B) T (2.99)
where the function S;(k) can be represented by
Si(k) = e, (2.100)

When we write the form (2.100) we admit that the scattering is elastic. The unitary
module of S;(k) keeps the same value for the probability current and does not allow that
the presence of the potential removes or add particles to the elastic channel k. From a
comparison of (2.99) and (2.94) we can obtain the expressions for g, and for the asymptotic
form of w(r):

a=i'2l+ 1)e™ (2.101)
and
w(r) ~ sin (kr - % + 51) : (2.102)

1(r) differs from the asymptotic form of the radial function of a free particle by the presence
of the phase shifis §;; the presence of the scattering potential creates in each partial wave
a phase shift §), and the scattering problem would be solved with the determination of
these phase shifts for a given potential V(r). In fact, the use of (2.99) and (2.98) in (2.82)
results in

fl6)= % g (21 + 1)e™ sin & Py(cos H). (2.103)
and the differential cross section (2.88) is obtained from the knowledge of the phase
shifts §;.

The phase shifts are evaluated by solving (2.92) for each | and comparing the phase of
u(r), for some large r, with the phase of jj(kr) for the same value of r. This is depicted in
figure 2.6. for a generic value of | and three different situations of the potential V(r).

The first curve shows uy(r) for the case in which V(r) = 0 for all r. In this case, u(r) =
Jilkr) and we do not have phase shifts for any I. The middle curve shows w(r) when one
introduces a small attractive potential acting inside a certain radius ry, thatis, V(r) < 0
forr < ry, and V(r) = 0 for r > ry. From (2.92) we see that, with this attractive potential,
| E— V(r) |>E in the potential region and the quantity d*u;/dr? will be greater in that
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Figure 2.6 Radial part of the wavefunction for three different potentials, showing how the
phase shiftsign is determined by the function behavior in the region r < rg where the potential
acts.

region than in the region of zero potential. Thus, w/(r) will oscillate rapidly for r < r,.
For r > ry, the behavior is the same as that in the case V(r) = 0, except that the phase
is displaced. In this way we see that with a small attractive potential, u(r) is “pulled in,”
which in turn advances its phase and makes the phase shift positive. The last curve shows
wi(r) for the case of a small repulsive potential, thatis, V(r) > 0 forr < ry, and V(r) =0
for r > ro. In this case, | E — V(r) |< E in the potential region and the quantity d’u/dr?
will be smaller in that region than in the region of zero potential. The result is that, for
a repulsive potential, u(r) is “pulled out,” its phase is retarded, and the phase shift is
negative.
The total cross section, in turn, has the expression

a= 1—7; )@+ 1)sin’ 4, (2.104)
1

obtained by the integration (2.89).
From (2.103) and (2.104) one extracts an important relation. For this, it is enough to

observe in (2.103) that

Im f(0) = ‘1‘ Z(ZI + 1)sin? § (2.105)
1=0
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and to compare this result with (2.104) to obtain

4

- Imf(0). (2.106)

T =
This relation is known as the optical theorem. It connects the total cross section with the
scattering amplitude at angle zero. This is physically understandable: the cross section
measures the removal of particles from the incident beam that arises, in turn, from the
destructive interference between the incident and scattered beams at zero angle [Sc54].
We will see in chapter 10 that the optical theorem is not restricted to elastic scattering,
being also valid for inelastic processes.

In the sum (2.104) each angular momentum contributes at most a cross section

(0 o = %(zl +1). (2.107)

a value of the same order of magnitude as the maximum classical cross section per unit
of angular momentum. Actually, if we use the estimate b = I/k for the impact parameter,
the contribution of an interval Al = 1, or Ab = 1/k, for the total cross section will be

gl (2.108)
i

For large | this agrees with (o)., except for a factor 4. The difference is due to the
unavoidable presence of diffraction effects for which the wave nature of matter is respon-
sible.

The partial wave analysis (2.103) gives an exact procedure to solve the scattering problem
at all energies. For a given potential V(r), (2.92) should be solved and its asymptotic
solutions (2.102) used to find the phase shifts §;. The infinite number of terms of (2.103)

is not a problem in practice, since

Jim & =0, (2.109)
This result can be verified by examining (2.92): for large I the centrifugal potential term,
proportional to [(I 4 1), is totally dominant, making irrelevant the phase shifts generated
by V(r). However, at high energies the sum (2.103) will have the contribution of many
terms, since, in this case, kro > 1, and for all | up to [, = kry there will be appreciable
phase shifts. The partial wave analysis is of great utility, especially in the low energy case,
which will be treated in the next section.

2.9 Low Energy Scattering

We have seen that the partial wave expansion is useful only at low energies since in this
case the number of terms of (2.103) that we have to deal with is small. If the energy is low
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enough, the sum (2.103) reduces to the term with | = 0. We have, in this case,

: 1
fir) = Zc"“' sin 8y (2.110)
and
a= ‘I—j— sin? 8. (2.111)

The differential cross section that results from (2.110) is independent of 8: the scattering
is isotropic. This is easily understandable since at low energies the incident particle wave-
length is much greater than the dimension of the target nucleus; during its passage all
points in the nucleus are with the same phase at each time, and it is impossible to identify
the direction of incidence.

In the extreime case £ — 0 the scattering amplitude (2.110) remains finiteonly if 55 — 0
together with the energy. In this case the phase difference is no more the main scattering
parameter. A better parameter is the scattering length a, defined as the limit

. . 8o
éum)f(ﬂ) = lllil‘:' =" (2.112)
yielding the equation
a =4na’ (2.113)

as the expression for the total cross section at the zero energy limit.

The physical meaning of the scattering length can be obtained observing that for [ = 0,
and in the limit E — 0, (2.92) in the region outside the potential reduces to its first term.
Hence, if d*u/dr? = 0, we see that the wavefunction u tends to a straight line and the
abscissa at the point where this line crosses the r-axis is the scattering length a. This can
be easily seen if we rewrite (2.102) in the limit E — 0:

uo(r) = kr + 8y = k(r — a). (2.114)

This property will be used later to determine if a state of the system is or not bound.

As an application let us evaluate the cross section of scattering of low energy neutrons
by protons. The attractive nuclear potential between a proton and a neutron is put in the
simple form

—Vh. 1 ;
Vi i}~ Yo F Ei (2.115)
Q. if r< ry.

where 1y represents the range of the nuclear force. We know that this problem can be
reduced to a single particle problem. a particle carrying the reduced mass of the system
and subject to the same potential Vy. E turns to be the total system energy in the center
of mass frame. For a neutron with energy E, incident on a proton at rest in the laboratory,
E is very close to E, /2.



IfI = 0 is the only partial wave to contribute, (2.92) assumes the form

du  2m
d? + -hT(E'f' Volu =0 (r < ry). (2.116)
du  2m
'&72- + -;?-Eu =0 (T > r"), (2]]7)

with the boundary conditions u = 0 in r = 0 and u and du/dr continuous at r = ry. From
this results

u=Asin(Kr) (r<n). (2.118)
with

K= w (2.119)

h

and

u=nsin(kr + 8y) (r > ro), (2.120)
where

g YOHE (2.121)

h
Note that both solutions are of sinusoidal type because E > 0. The continuities of the
function and its derivative at r = ry can be expressed by the continuity of (du/dr)/u:

K cot (Kry) = kcot (kra + ) (2.122)
or

kian (Kry) = Kan (krg + 4¢). (2.123)
which in the limit k — 0 gives

T—— [m",éx""’) " l] . (2.124)

170

where Ko = +/2mV,/h. The total cross section calculated from (2.124) using (2.111) shows
singularities at the points where Kory have values /2, 37/2, etc., since the tangent in the
numerator of (2.124) makes the cross section diverge. This corresponds physically to the
appearance of a bound state at that depth. As we are dealing with very small E, there is a
resonance whenever an increase in the well depth gives rise to a new level at zero energy.
But, in fact, (2.124) is not valid for the Kyry values above, which violates the approximation
from which it was deduced. The exact equation (2.123) shows that, when Krg = 7/2,3m/2,
etc., the phase shift is 8 = Kry, and from (2.111) we see that, for these values of 4, the
cross section has very large but finite values, given by

4
4 = I:' (2.125)

Note that (2.125) can be written as o = [4/(kro)?] 7 ré. Since kry <« 1, 0 is much greater

than 7 rZ, which is the geometrical cross section of the scattering potential. When o has its
maximum possible value for an s-wave scattering, one says that the cross section is in an
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Figure 2.7 Neutron-proton cross sections at low energies. Ep is the energy of the incideni
neutron. The experimental points were oblained from |Ad50} and [Ho71]. The curve was
calculated using (2.144).

s-wave resonance. Resonances in other partial waves occur if E is large enough to create
large phase shifts for | > 0. For example, when §, = 7/2,37/2, etc,, the cross section is
especially large and one says that we have a p-wave resonance.

Another interesting fact to see in (2.124) is that, if tan (Koro) = Koro, the phase shift and
the scattering cross section vanish. Hence, for certain values of the well depth there will
be no s-wave scattering. This is known as the Ramsauer effect, owing to the discovery by
C. Ramsauer, in 1921, that the effective cross section for electron scattering in inert gas
atoms is very low at energies close to 0.7 eV. The quantum theory gives a simple explanation
of this effect, which cannot be explained by the classical theory. The atomic field of inert
gases decreases faster with distance than the fields of other atoms; as a first approximation,
we can replace this field by a rectangular well and use (2.111) and (2.124) to evaluate the
cross section of the low energy electrons. For an electron energy of approximately 0.7 eV,
we get o ~ 0, if we use ry equal to the atomic dimensions.

Let us make an estimate of the neutron-proton cross section. Let us use Vo = 34 MeV
for the approximate depth of the deuteron potential. We have

SImVy  /2mc?V, /93893 x 34
Ky = :"’: 2’;: D 12)733;3 =091 fm™", (2.126)

where m is the reduced mass, equal to half a nucleon mass. Still using ro = 2.1 fm as the

deuteron radius, we have

8o 1an (Korg) -13 1an (0.91 x 2.1) 13
= |1 - 2O | 5y 5O | il B e 40 12
=% "’[ Koro ] 8 0.91 x 2.1 X o a2

Hence,
o =4m(5.2 x 107%)2cm? = 35b. (2.128)

Figure 2.7 shows experimental values of the neutron-proton cross sections up to 20 MeV.
In the zero energy limit the cross section has the value o = (20.43 & 0.02) b, six times
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Figure 2.8 Radial part of the scattering wavefunction u at zero energy for two values of the well
depth. [n (a) the depth is nol large enough for the existence of a bound stale and the scattering
length is negative. In (b) one sees the existence of a bound state. the function u has a maximum
inside the potential range and u has a positive value.

greater than the value obtained in (2.128). The reason for this discrepancy was explained
by Wigner, proposing that the nuclear force depends on the spin, being different when
nucleous collide with parallel (triplet) spins or with antiparallel spins (singlet). As there
are three triplet states and only one singlet, an experiment where the nucleons are not
polarized will register three times more events of the first type than of the second, resulting
for the cross section the combination

3 1
od=—0+ —0,. (2.129)
4 4

Ifthen o = 20.4 b and o, = 3.4 b, one gets for a, the value 71 b! The explanation for this
high value is found in the fact that the singlet potential is shallower than the triplet one,
being within the threshold for the appearance of the first bound state. This gives rise to a
resonance when the incident particle has very low energy, as happens in the present case.

There are ways to find whether the singlet potential has a bound state with a very low
negative energy or if the resonance occurs at a very low yet positive energy. For that let
us initially study the scattering amplitude variation as a function of the well depth in the
aase of very low incident energy E. When V; = 0, (2.92) has the simple form 4" = 0, and
the trivial solution for u is a straight line crossing the origin. When Vj is small and forms
the well, the form of the wavefunction looks like figure 2.8a. There is no bound state
yet, and the scattering length a is negative (see 2.114). When V, is deep enough to allow
the existence of the first bound state, the form of the wavefunction is as in figure 2.8b,
with a maximum inside the well. This is an expected behavior: the internal part of the
wavefunction is not sensitive to the fact that E is a little positive or negative, and a bound
state wavefunction should have in rg a negative derivative to match to the exponential decay
of the external part. The essential result is that the sign of a (s, in this case, positive. Thus,
the sign of the scattering length can show us if a resonance occurs with a negative (bound)
state or a positive (virtual) energy.

The combination of (2.113) and (2.129) gives

o =n(da} +al), (2.130)
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where g, and a, are the scattering length for the triplet and singlet potentials, with respective
cross sections o; and o, given by expressions such as (2.113). For an equation like (2.130) it
does not matter what the sign of the scattering amplitude is, since it expresses an incoherent
combination of singlet and triplet scattering. The cross section is proportional to the square
of the amplitudes, in the same way as the intensity of a light beam is proportional to the
square of the magnitude of the electric (or magnetic) field. One form of coherent scattering
is achieved when the wavelength of the incident particles is of the order of the distance
between the nuclet inside a molecule. In the case of neutrons incident on H;, the distance
between the protons in the molectle is about 0.8 x 107 cm and the coherent scattering is
reached with a neutron energy near2 x 10~ eV. The scattering of these very slow neutrons
by a hydrogen molecule produces an interference phenomenon similar to that occurring
with light waves that emerge from the two slits of a Young experiment. An additional
ingredient in the present case is that the H; molecule can be in two states, one with the
spins of the protons forming a triplet (orthohydrogen) and the other where the spins form
a singlet (parahydrogen). When a neutron interacts with an orthohydrogen molecule the
two scattering amplitudes are of the same type; when the interaction is with parahydrogen
they are of different types. Schwinger and Teller [ST37] have found expressions for the
scattering cross sections of slow neutrons with ortho- and parahydrogen:

o =c)(a, — a,)? + c3(3a, + a,)’, (2.131)

where ¢; and ¢; are numerical coefficients, with different values for the two types of hydro-
gen and also depending upon the incident neutron energy and the gas temperature. This
last dependence is natural since the incident neutrons have very low velocities and the
thermal molecular motion, in this case, has a non-negligible influence. As an example,
at a temperature of 20.4 K and with 0.0045 eV neutrons the coefficients are, for orthohy-
drogen, ¢, = 13.762 and ¢; = 6.089, and for parahydrogen, ¢; = 0 and ¢; = 6.081. Note
that in (2.131), contrary to (2.130), the signs of a,; and a, are important for the calculation
ofa.

From (2.131) it is possible to obtain the scattering lengths a, and a, if the experimental
cross sections are known. Measurements of these cross sections using gaseous hydrogen
have been done since 1940 [SS55], improving former work done with liquid H,, where
the effects due to the intermolecular forces are difficult to separate. The cross sections
were measured from room temperature, where the proportion is 75% orthohydrogen
and 25% parahydrogen, down to 20 K. At the lowest temperature only parahydrogen
exists since it has a greater binding energy than orthohydrogen and can be formed by the
decay of orthohydrogen, provided the process is accelerated by a catalyzer (a substance
with paramagnetic atoms that induces the spin change of one of the protons of the H,
molecule).

The results found for the scattering lengths in these and other experimental works using
different methods are not free of some systematic errors. Houk [Ho71] recommended
the values

a; = (5.423 £ 0.005) fm. 4. =(-23.71 £0.01) fm (2.132)
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for the scattering lengths. Note that these values also satisfy (2.130). The negative sign of
the singlet scattering length is the answer to our question related to figure 2.8: the proton-
neutron system has no bound state except the deuteron ground state, The resonance in
the low energy scattering of neutrons by protons is due to a state of the system with a small
positive energy.

2.10 Effective Range Theory

In the previous section we developed the theory of elastic scattering at energies close to
zero, where the cross sections are expressed by (2.113). When the incident neutron energy
goes beyond this limit we have two problems to face. First, the limit (2.112) is no longer
applicable and the scattering length alone cannot determine the cross section. Second, the
series (2.103) cannot be truncated in [ = 0, since the terms | = 1.1 = 2, ... begin to have
a significant contribution. In fact. this problem begins to be important only at energies
of tens of MeV. The results that we shall obtain show that we can safely proceed up to 20
MeV using only the partial wave [ = 0. The title of this section has thus the meaning that
the zero energy approximation will no longer be valid but we will remain restricted to the
[ = 0 component of the angular momentum.

Our purpose is to investigate the behavior of the cross section (2.111) when we move
away from the zero energy limit. The first resuits in this direction were established by
Schwinger using a variational principle, but were reproduced afterward with a simpler
method that is based only on the properties of the wavefunction. We will follow closely
the work of H. Bethe [Bet49]. where this method is explicated with clarity.

Let us consider the incident neutron with energy E, and wavenumber k;. If we write
(2.92) for | = 0 and use (2.121), the radial wavefunction satisfies

du, 2m
—- + kiuy ~ —

dr? I

For another energy E;. we have

V(r)u, = 0. (2.133)

d?u; 2m
— + Ky~ =V =0. 2.134
gz TRk (rju; ( )

Multiplying (2.133) by u; and (2.134) by u,, subtracting and integrating, we arrive at
R
uguy — upyl§ = (k3 — k‘f)/ Wyuydr, (2.135)
0

where the limit R is arbitrary.

Let us define the function W as the asymptotic form of u, but valid for every point in
space:
o Molhir 4y (2.136)

Sil &)y

where the norinalization was chosen to make W = 1 at the origin; this also determines the
normalization of u. Note that the sub-index of the phase shift § refers to the energy and
not to the angular momentum.
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A relation analogous to (2.135) is valid for ¥:
R
Y e A A kf)/ Wy W dr. (2.137)
0

Let us subtract (2.135) from (2.137). If R is chosen beyond the range of the nuclear
forces, where W and u coincide, the contribution of the left side in the limit R will be
zero. At the lower limit u; = ¥, = 0 and thus this term does not contribute. Extending the
integration limit to infinity, we obtain:

I OVH0) = W20 ¥1(0) = (b — ) [ (12 = ) (2.138)
0
The derivatives of (2.138) are obtained from (2.136), resulting in
ky co1dy — kycondy = (ki — kf)/.- (W1W2 — uyua)dr. (2.139)
1

Let us now apply (2.139) to the special case k; = 0. In this case, k; cot§; = —1/a, where
a is the scattering length. Ignoring the lower index 2, (2.139) can be rewritten as

kcold = ‘--:; + k2 / (VoW — uou)dr. (2.140)

0

No approximation has been done up to now and (2.140) is exact. But, looking at the
integrand of (2.140), we see that it is different from zero inside the range of the nuclear
forces; in this situation, ¥ and u depend very weakly on the energy. since E is supposedly
small compared to V(r) (see 2.92). A reasonable approximation is therefore to replace ¥
and u by ¥, and ug, respectively, and to write

1.1,
kcold = —= + =k*rerr, (2.141)
a 2
with
e
Feif = z/ (Vg — uj)dr. (2.142)
[H]

The quantity r.;, which has the dimension of length, does not depend on the energy and
is called effective range. The factor 2 was inserted in its definition to make it resemble the
potential range. Gathering (2.111) and (2.141), we can express the cross section hy

_ 4 1 _ 4ra’
Tk 1+co8y  aZk?+(1- %are"-kl)l'

a (2.143)
where the influence of the potential is represented by two parameters, the effective range
reff and the scattering length a. Thus the cross section is not affected by the details of the
form of the potential since with any other reasonable form it will be always possible to
adjust the depth and the range in such a way as to reproduce the values of a and r.g. The
result is that a study of low energy scattering does not lead to information about the form
of the nudeon-nucleon potential. The theory of effective range is therefore sometimes
called the form independent approximation.
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For the application of the cross section (2.143) we have to remember that there are in
fact two potentials, one for the singlet and another for the triplet state, and (2.143) should
be, using (2.129), more appropriately written

3 4ral 1 4mal

i i . 2.144
dalk? + (1 - tarnk?)? 4 al2k? + (1 - lark?)? ( )
] 5 ) )

a

implying the existence of four parameters to be determined: a,, a;, i, r;, namely, the
scattering lengths in the singlet and triplet states and the respective effective ranges. For
the first two we have the established values (2.132). The effective range in the triplet state,
n, can be obtained from well-known experimental information, the deuteron binding
energy. For that goal it is enough to see that there is no restriction to employing the above
theory to negative energies, namely, bound states. So let us use for u the deuteron radial
wavefunction; in this case W is the decreasing exponential (2.39),

W= VR, (2.145)

already properly normalized. Ej is the deuteron binding energy and m its reduced mass.
Using (2.138), with W, = W and ¥, = ¥, we have

JImEy 1 2mE
L L (2.146)
h a, K 2

being an expression that allows us to deduce r, from a4, and Eg. The sign of the right-
hand side of (2.146) was introduced because in the case of negative energy the sign of the
second term of (2.134) should be changed. Using the values of (2.25) and (2.132), we get
the effective range for the triplet potential:

n =176 fm. (2.147)

The value of r, cannot be obtained as a direct result of an experiment and is normally used
in (2.144) as the parameter that best reproduces experimental values of the cross section.

The value
r, = 2.56 fm (2.148)

produces cross sections with (2.144) that are in very good agreement with experiment, as
we can see in figure 2.7.

2.1 Proton-Proton Scattering

This type of scattering is more difficult to deal with than that of the neutron-proton case.
Aiming to pinpoint the origin of some difficulties, we shall initially describe the essential
differences between the two types of scattering.

1) In p-p scattering there is a repulsive Coulomb force between the protons in addition
to the nuclear force. The Coulomb forces are of long range: the differential cross section
(Rutherford formula) diverges for small angles and the total cross section is infinite.

2) When we deal with identical particles, the Pauli principle puts restrictions on the
spatial and spin wavefunctions. In particular, at low energies (I = 0), the spatial part is
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Figure 2.9 Two possible and indistinguishable ways to detect a proton in the angle # after
P-Pp scattering

symmetric and the spin part is, as a consequence, antisymmetric. In this way only the
singlet state contributes to the cross section.

3) The indistinguishability between the protons implies that it is not possible to dis-
criminate the two situations shown in figure 2.9. The wavefunction and the scattering
amplitude should have contributions of & and 7 — 6. In the calculation of cross sections
(square of the scattering amplitude) interference terms between the two parts show up.
This is a purely quantum phenomenon, with no analog in classical physics.

4) The two independent forces, the nuclear and the Coulomb, contribute their own
terms to the cross section. But, the nuclear scattering acts coherently with the Coulomb
one and an interference term between the two effects also appears in the cross section.

To take care of all these questions the differential cross section (2.86) is composed of
several parts. Its expression for the s-wave (I = 0), which we present without demonstration
(see [BD04)), can be written as the sum

do _ do (da (fi_ﬂ_) 5149
a_s—i - [(‘Ki)l T d_gz‘)n " ds2 cn}. ( . )

The first two terms of (2.149) are due to the Coulomb and nuclear potential, respectively,
and the third is the interference term between them. Explicitly (see [BD04)),

(dcr )‘ _ ( ¢? )Z I 1 . 1 _cos {nln [tan? (6/2)]} (2.150)

dQ 2E,) |sin*(0/2) * cos*(9/2)  sin?(0/2)cos? (8/2) |

where e? = 1.44 MeV - fm, E, is the kinetic energy of the incident proton in the laboratory
system, assuming the second proton to be at rest, # is the scattering angle in the center
of mass system, and 1 = e?/(hv), v is the relative velocity between the protons. The first
term in (2.150) refers to the usual Rutherford scattering; the second is due to the necessary
existence of a term in 7 — 6 explained in item 3 above. The last term is the interference
term between the two previous contributions, namely, the Coulomb scattering in 6 and in
m — 6. This term was first studied by Mott [Mo030] and the full expression (2.150) is known
as Mott scattering.
The term in (2.149) due to the nuclear potential has the expected form

X Z{S
(:_;’2) - “’"k_z 0 (2.151)
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Figure 2.10 Composition of the proton-proton differential scattering cross section
(solid line) by the sum of Coulomb (dotted line) and nuclear (dashed line) parts and
the interference term (daslied-dotted line). The energy of the incident protons is 3.037
MeV. The experimental points were taken from |Kn66] and the besi it to (2.149) is
obtained with &) = 50.952°. Due to the symmetry about 90°, only valnes up to this
angle are shown.

and is written as a function of a pure nuclear phase shift §,. Since the nuclear scattering
is isotropic, integration of (2.151) yields trivially the result (2.111). It remains to explain
the interference term between the Coulomb and nuclear scattering:

(2.152)

(dn ) 1 ( et )2 sin &g lcos [80 + ninsin? (#/2)]  cos[dg + nincos? (#/2)]

Q. o 72 E—,. " sin® (6/2) cos? (8/2)

The nuclear phase shift §, of (2.151) and (2.152) should be found by a best fit of (2.149)
to the experimental points at each energy. In the example of figure 2.10 one obtains
do = 50.952° for E, = 3.037 MeV. We also see in the figure that the interference yields a
total cross section that can be smaller than the purely Coulomb or nuclear part.

When the above procedure is repeated for several energies one obtains the graph in figure
2.11. Note that the interference term allows one to obtain the sign of 8, from the experi-
mental cross sections, which is not possible with low energy neutron-proton scattering
(see 2.151).

In the study of neutron-proton scattering we developed the effective range theory, where
the phase shifts have their values linked to only two parameters connected to the potential,
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Figure 2.11 Phasc shift variation as a function of the incident proton
energy for proton-proton collision. The experimental points are from
reference [JB50).

not depending on details about the form of the potential. The application of a form-
independent theory to the case of proton-proton scattering demands some care, since the
Coulomb potential has infinite range and even in the zero energy limit the approximation
(2.141) is no longer valid. Despite this, a theory for the process was developed [JB50],
resulting in parameters comparable to the scattering length and to the effective range of
the neutron-proton singlet scattering. For proton-proton scattering we have

a, = (~7.82+0.01) fm, r, = (2.79 £ 0.02) fm. (2.153)

The much lower absolute value of a, now found is not of great significance in comparative
terms because the Coulomb force adds to the nuclear one. There are means, however,
to approximately subtract the effect of this force [JB50] and to evaluate proton-proton
scattering amplitudes as if there were only the nuclear force. This new valueisa, = —17fm,
closer to but yet different from the value corresponding to neutron-proton scattering (a; =
—23.71fm). Itis stillan open question whether this difference is real or caused by deficiency
in the methods, but, anyway, an examination of figure 2.8 show us that a difference
like this has little influence on the wavefunction. Similar values for the parameters of
neutron-proton and proton-proton collisions would support the assumption of charge
independence of the nuclear force, and with the available results we can say that at least
approximately this assuinption is true.

2.12 Neutron-Neutron Scattering

Low energy neutron-neutron scattering does not present any additional theoretical difh-
culty as compared to neutron-proton scattering, since in both cases the nuclear force is



the only agent. The problem here is of experimental character, since a neutron target is
not available and the study of the interaction should be done indirectly.

One of the methods employed consists in analyzing the energy spectrum of the protons
resulting from the reaction

n+d—=p+non+n. (2.154)

Itis a continuous spectrum but presents a peak near the maximum energy. This indicates
a resonance related to the formation of the di-neutron virtual state, and the peak width
can give information about the scattering length. When one collects this and other results
from reactions with two neutron formation, one can extract the average values

4, =(-176 15 fm. r. =(3.2+ 16)fm (2.155)

for the scattering length and effective range of the neutron-neutron scatiering, respectively.
These values are closer to the proton-proton nuclear scattering than to the neutron-proton
scattering. Hence, since they are stronger than the charge independence. there is the indi-
cation of a charge symmetry of the nuclear force.

2.3 High Energy Scattering

When the energy of the incident nucleon reaches some tenths of an MeV. new modi-
fications in the elastic scattering treatment are necessary: waves with / > 0 begin to be
important and the differential cross section, according to (2.88) and (2.103), will be deter-
mined by the interference of different | values. If, for example, | = 0 and | = 1 waves are
present in the scattering, then

do 1

@l
As a consequence, the interference between s and p scattered waves leads to breaking
the scattering symmetry about the angle # = 90° that would exist if each wave scattered
mdependently.

Up to an energy close to 280 MeV, elastic scattering is the only process to occur in a
nucleon-nucleon collision. The nucleons do not have low energy excited states and the weak
interaction (chapter 8) is very slow to manifest itself in a scattering process. Figure 2.12
sketches proton-proton total cross section behavior as a function of energy. The smooth
decrease in energy is interrupted at 280 MeV (135 MeV in the center of mass), value
that sets the threshold of pion creation. With the beginning of the contribution of these
inelastic processes, the total cross section separates from the elastic one.

sin® 8y + Gsin 8y sin 8, cos (dg — &;) cosH + 9sin? §; cos? H] y (2.156)

2.14 Laboratory and Center of Mass Systems

With the aim of completing the elastic scattering study. we will see in this section how
the change in the reference frame affects the quantities related to the scattering, specially
angular distributions.
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Figure 2.12 Total and elastic proton-proton cross sections as a function of the laboratory
energy |Ba%6|.

The center of mass of a system of particles is defined by the vector

Y mr,
6= ' 2.157
T (2.157)
which moves with the velocity
) mavi
v, = TR (2.158)

In the special case of two particles with the second at rest, the center of mass velocity has
the simple expression
ny Vv

Vi = =R (2.159)
m, +m; m;

where V is the velocity of particle 1 and mp the system reduced mass, defined by

mymy
mg =

. (2.160)
m +m;
Figure 2.13 shows this collision as seen by an observer located at the center of mass.
One sees that the total linear momentum is always zero when computed at the center
of mass. This property can be used to make it easier to evaluate the energy balance of
a reaction. From the laboratory point of view, one should add the center of mass velocity
to the velocities of figure 2.13. The result is seen in figure 2.14: 6 and ¢ are the emerging
angles of particles 1 and 2 (the latter being initially at rest), respectively. The triangle ABC
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Figure 2.13 Collision seen by an observer located at the center of mass.

is isosceles; hence ® — ¢ = ¢ and thus

1 1
z—Q:—
’ 2 2

relations that are independent of m, and mj,. In the triangle CDE,

(r - ), (2.161)

CD - Ve+(V—=V.)cos© _ Ve/(V = Vi) +cos® _ my/my + cos e

L= — = = ; 2.162
« DE (V - V.)sin © sin © sin © ( )
thus
mj
cotf = m—cosec & + colan ©. (2.163)
2

Relations (2.161) and (2.163) define how the angles change in the passage from one system
to the other.

The differential cross sections o (#) and o (®) can also be related. For that, we have to
keep in mind that if w and 2 are the solid angles associated to # and ©, respectively, then
o{f)dw = o (®)dS2, since the detected particles are the same in both cases (see definition

Figure 2.14 Transformation of center of mass velocities to the laboratory.
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2.86). In this way

a(d)  dQ  2rsin OdO

T do 2nsindde 2.164
o(®) dw  2rsin6deo (2.164)

Using now (2.163) to obtain d® /df, we get

sin® @ 1
T, ( ) : (2.165)
a(®)  sin*0 \1+mcos@/m;

which is the relation between the cross sections in the two systems that we were searching
for.

2.15 Exercises

1. Use the listed values for the masses of the proton, neutron, and deuteron and deduce
the value (2.25) for the binding energy of the deuteron.

2. Calculate the percent loss of mass due to the binding energy for the systems: a) earth-
moon; b) hydrogen atom; c) deuteron. Verify that only in the last case is this effectimportant.

3. Using (2.36) and (2.39) as the wavefunction of the deuteron, calculate: a) the fraction of
time that the neutron and the proton spend out of range of the force between them; b) the
mean square radius of the deuteron.

4. A common generalization of the potential of figure 2.1 is the addition of a “hard core,”
thatis, V = +oo forr < ¢, ¢ being the radius of the core. Show that the presence of the core
modifies the wavefunctions but does not alter the relationship between Eg, R, and V; given
by (2.43).

5. Suppose that the interaction potential between the neutron and the proton is exponential,
of the form V = Vpe /2, where V, and r, are, respectively, the depth and range of the
nuclear potential. a) Write the Schrédinger equation (in the center of mass system) for the
ground state of the deuteron, of angular momentum | = 0. b) Use the definition x = e~/
and Y (r) = u(r)/r. Show that the Schrodinger equation has a Bessel function as solution.
Write the general solution of this equation. c) Applying the boundary conditions (¥ finite
for r = 0 and r = 00), determine the relationship between Vy and r,,.

6. For a system of two nucleons, show that L + S + T should be odd, where L, S, and T are,
respectively, the quantum numbers of orbital momentum, spin, and isospin of the system.

7. The deuteron has spin 1. What are the possible states of total spin and total angular
momentum of two deuterons in a state with orbital angular momentum L?



3. Suppose that the meson 7 (spin 0 and negative parity) is captured from the orbit P in
a pionic atom, giving rise to the reaction

7" +d — 2n. (2.166)

Show that the two neutrons should be in a singlet state.

9. Show that if S;(k) has the form (2.100), the wavefunction (2.99) describes an elastic
scattering. Suggestion: show that the flux of the probability current vector through a sphere
that involves the scattering center is zero.

10. Demonstrate the relation (2.103), using (2.82), (2.98), and (2.99).

1. Demonstrate the relation (2.104), using (2.103) and

4
/dQ Pi(cosH) Pr(cosh) = i,—:’:—] T (2.167)

12. Find the cross section for low energy particles incident in a "hard sphere” potential

Vir)=oc (r < R). (2.168)

Vi)=0 (r> R). (2.169)

13. Low energy neutrons are scattered by protons. Let ¢# and ¢ be the emerging angles of
neutrons and protons, respectively. a) Show that, for a given event, & + ¢ = 90°. b) The
scattering is isotropic in the center of mass and (2.165) shows that the neutron angular
distribution in the laboratory system is given by o (¢#) = 4cos # o (©®). Show that for protons
there is the relationship a (¢) = 4cos ¢ o (P). c) Since o (@) and o (P) are constants, the
functions o (#) and o (¢) have maxima in 0°. How does this result harmonize with the result
of item (a)?

14. Say why it is not possible for a proton at rest to scatter another proton of low energy if
both spins have the same direction.

15. A neutron of kinetic energy E; is elastically scattered by a nucleus of mass M, remaining
wvith a final kinetic energy E;. a) With © the scattering angle in the center of mass, show
that

? = % [(1 +a) — (1 —u)cos ('-)]. (2.170)

wherea = [(M — 1)/(M + 1)]2. b) What is the maximum loss of kinetic energy as a function
of £y and M? For which angle © does it occur? Which angle @ in the laboratory system
corresponds to this value of @?
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16. Assume that, in the scattering of a particle by a central potential, all phase shifts §
except for 8, and 8, are negligibly small.

(a) Find the differential and total (integrated over angles) cross sections.
(b) For 8¢ = 20° and &) = 2° calculate the relative contribution of the p-wave to the total cross
section and the ratio of cross sections in the forward, # — 0, and in the backward, # — 1,

directions.

17. Consider the Born approximation scattering amplitude (see [BD04])
fk' k) = ~2nl# fd‘rr‘ Wy r)etent (2171)
for the spherically symmetric potential U(r).

(a) Using in (2.171) the expansion of the plane wave over spherical waves and the addition
theorem for spherical harmonics (see Appendix A), present the scattering amplitude as an
expansion over Legendre polynomials of the angle # between k and k' and find the partial
amplitudes f.

(b) For the short-range potential of radius R, kR « 1, and typical magnitude U, estimate the
energy dependence of the phase shifts &;.

18. Which of the following quantities are conserved? Energy E, components of the momen-
tum p, components of the orbital momentum |, its square i parity P, when a particle is
moving

(a) with no external fields (free motion);

(b) in the static uniform field along the z direction;

(c) in the static central field U(r);

(d) in the field U = f{p) where p is the radius in the x, y-plane;

(e) in the uniform field along the x-direction with time-dependent amplitude?

19. The nucleus of the deuterium atom (heavy hydrogen isotope) is the deuteron, the only
existing bound state of a neutron + proton system, with binding energy Eg = 2.2 MeV.

(a) Assuming that the orbital momentum of relative motion in the deuteron is [ = 0, calculate
the penetration length 1/« of the deuteron wave function in the classically forbidden region
outside the nuclear potential (see problem 3).

(b) Consider the neutron-proton potential as a square well of radius R = 1.7 fm (1 fm = 10"
cm). Calculate the critical depth for the appearance of a bound state in this well.

(c) For a bound state with a small but nonzero binding energy ¢, the square potential has to
be deeper compared to its critical depth Uy™ by U = Ug — U§™. Considering the matching
conditions for a well slightly deeper than the critical one, Ug < U™, derive the connection
between §Up and ¢ and calculate the depth of the potential for the deuteron (the radius value
Is given in part b).

(d) Estimate the praobability for the proton and the neutron in the deuteron to be outside the

region 7 < R of nuclear attraction.



