Appendix C | Symmetries

C.1 Time Reversal

The equations of quantum as well as classical mechanics are time-reversible if there is no
variable in time or magnetic external fields. In contrast to other discrete symmetries, this
symmetry does not correspond to any conserved Hermitian operator. Under time reversal,

not only do operators of linear and angular momenta have to change sign but the direction
of processes has to be reversed as well. A final state of a particle with momentum p and spin
s is to be transformed into the initial state of the time-reversed process with momentum —p
and spin —s. Therefore the time reversal operation 7 includes transposition (or complex

conjugation K) of observables.
Let us define the time reversal operation as

T = UrKOr, (Cl)

where Or changes the time direction in the quantities which are explicitly time-dependent,
and Ur is a unitary operator which has to ensure correct transformations of physical
quantities. Due to the complex conjugation X, the operator (C.1) is not linear in usual
sense; it acts on the coefficients of the linear superposition

(C.2)

T(a¥y +b¥y) =a*TW; +b*T W,

(sometimes it is called antilinear).
When applied to the Schrodinger equation

ih%\v(t) = HW(t), (C.3)

the operation (C.1) gives

—ih#‘_t)(urw'(—:)) = THT (Urv*(-t). (C4)

Let us design
A= A=T
The reversed
H=THT-
As seen from
V() = U-w
satisfies the s3
is T-invariang
H = H.
If the Hamiltg
W(t) = W(0e

If the Hamiltg
gate”) function
E. For a nond
this energy so
constant phase
linearly indepe

The specific
specific system
coordinates r a

f = UTI’- L::

p=Urp L:?
In order to satis|
toput Ur =1.'
For free motion
than operator) i
conjugate funct
the reverse direq

C.2 Spin Tran

For particles wit]
matrix Ur that w
mentum operata

J=TIT'=u

For the orbital pa
we need an extra




...

Symmetries | 433

Let us designate the time reversed quantities with a tilde,

A= A=TAT . (C.5)

The reversed dynamics (C.4) are governed by the reversed Hamiltonian

H=THT™ = UrH*(-t) Ut (C.6)

As seen from (C.4), the new state vector

W(t) = Urw*(—t) (C.7)
satisfies the same Schrédinger equation (C.3) as the original vector W (t) if the Hamiltonian
is T-invariant,

H=H. (C.8)
If the Hamiltonian is time-independent, it has stationary eigenfunctions,

W(t) = W(0)e /ME (C.9)
If the Hamiltonian is also T-invariant, (C.9) shows that the time-reversed (“time conju-
gate”) function with the amplitude UrW¥*(0) is also an eigenfunction with the same energy
E. For a nondegenerate eigenvalue E, there is only one eigenfunction corresponding to
this energy so that the time reversed function can differ from the original one only by a
constant phase. However, in the degenerate case, one can have two mutually time-reversed

if there is no linearly independent states W and ¥ with the same energy.
metries. this The specific form of Uy depends on the representation used for the description of a
me reversal. specific system. For spinless particles described in the coordinate representation by their
be direction coordinates r and momenta p = —ihV only, time reversal should giver = r, p= —p, or
n pand spin
e p t=Urr'Us' = UprU; ! =1, (C.10)
mentum —
for complex p=Urp'Ur' = —UrpUs! = —p. (C.11)
Inorder to satisfy these conditions we do not need additional operators Ur, soitis sufficient
to put Ur = 1. The T-invariant Hamiltonian has to be an even function of momenta p.
(Y For free motion the stationary solution is a plane wave exp (ik - r) with (c-number rather
] ] than operator) momentum p = #k. The time reversal operation gives, for Ur = 1, the
'0( physical conjugate function exp (—ik - r), and this is what we expect for the wave propagating in
sar in u_ 1 the reverse direction. The solutions with momenta p and —p are degenerate.
2 C.2 Spin Transformation and Kramer's Theorem
For particles with intrinsic degrees of freedom as Spin, it is necessary to specify the unitary
matrix Ur that would ensure a correct transformation of these variables. Any angular mo-
<3 mentum operator J is 7 -odd,
J=TIT "= U Up! = ). (C.12)
For the orbital part1 this follows from the transformation of the momentum p, (C.11). But
C % we need an extra operator Uy to transform the spin variables.
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In the standard representation of the Pauli matrices (A.82), only one of them, o, is
imaginary, while o, and o, are real. This corresponds to the usual choice of phases of the
matrix elements of the angular momentum (A.72)—(A.74) when the lowering J, — iy and
raising |, + i, combinations have real matrix elements (A.71). In this representation one
can take

Ur = nroy (C.13)

with an arbitrary phase factor n7, [n7]? = 1, as the unitary operator performing time rever-
sal. Using the identity (A.83) accumulating the whole algebra of the Pauli matrices, it is
easy to check that

§=Urs*U;' = —s, (C.14)

as it should be under time reversal (C.12).
Consider a system of A particles with spin 1. The natural generalization of (C.13) should
be

Ur = (n1)"ay(1) - - 0y (4), (C.15)

since the spin variables of all particles are to be reversed. Taking into account that the

matrices o, are imaginary and rf)? = 1, we find for this system

T? = UrKUrK = (-)A. (C.16)

Let a system with a 7-invariant Hamiltonian be in a stationary state W. If this state
is not degenerate, it can be changed under time reversal by not more than a phase factor.
TV = exp (i) V. But then

T = T(e“W) = e Ty = ¢ gy = . (C.17)

Hence, for a nondegenerate state T? = 1 regardless of a number of particles. According
to (C.16), this means that a system with an odd number of particles with spin § cannot
have a nondegenerate stationary state. We came to the Kramers theorem: stationary states
of a T-invariant system of an odd number of particles with spin 1 are degenerate, at least
twofold.

In the simplest case of a single particle with no spin-orbit coupling or other spin-
dependent forces, this is merely a degeneracy of spin states y... For a particle in a central
field which includes a spin-orbit potential, a stationary single-particle state |jm) with
total angular momentum j =14 1/2 is (2j + 1)-degenerate since the rotationally invari-
ant Hamiltonian cannot change its eigenvalue if the orientation is changed. An external
electric field can split this degenerate multiplet. However, the electric field, like any other
field keeping time reversal invariance, does not distinguish between the time-conjugate
orbits |jm) and |j —m), they stay degenerate. An actual splitting depends on m?2. In cases
with no axial symmetry, as in crystals, m is not a constant of motion anymore, but the
degeneracy of time conjugate orbits still holds.

Contrary to that, the magnetic field changes sign under time reversal. A system with an
external magnetic field B is not time reversal invariant: the level splitting E,,(B) depends
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on m and the degeneracy is lifted. If a source (current) generating magnetic field B is a
part of the system under consideration, so that the total time reversal operation includes
B — —B, the entire system becomes again 7-invariant. Then the degeneracy is restored
because for each state |m; B) there is a conjugate state |—m; —B) with equal energy. If a
system is externally cranked, the angular velocity 2 also changes sign under time reversal,
and the situation is the same as for magnetic field.

C.3 Time-conjugate Orbits

As we saw in the preceding sections, the behavior of the wavefunction under time reversal
depends on the spin of the state and on the representation. We will use the representation
where the spinors are transformed with the matrix Uy of (C.13) with the phase factor
nr = —i. Thus, at our choice of nr, the time reversal operator coincides with the rotation
around the y-axis by an angle 180°,

Ur = Ry(n). (C.18)

Acting on the spinor x,, with s, = m = %(}), the operator Ur changes m — —m, and the
phase factor gives

Urx+ = x-, Urx- = —x4, (C.19)

which can be expressed as

Urdm = (=) x=m. (C.20)

We know that, with respect to rotations, a system with angular momentum | can be
thought of as constructed of 2] spins 1. Looking at the time reversal behavior, we have, as
in the proof of the Kramers theorem, to perform the transformation (C.20) for each spin.
As a result, the state |JM) changes the sign of M and acquires the phase factor with the

exponent ) (; — m) = | — M. Thus, the definition of the time conjugate state, consistent
with (C.20), is

|JM) = Ur| JM) = (=)) | ] —M). (C.21)

Note that the second time reversal would restore the original state | JM) with the phase
factor (—)*/ which equals 1 for an integer J and —1 for a half-integer J.

We already witnessed the appearance of the phase (C.21) in the vector coupling of
angular momenta when it was related to reversed motion, ] — —J. The definition (C.21)is
consistent with the phase choices of matrix elements of angular momenta and 3j-symbols.
Unfortunately, the traditional definition of spherical functions Y}, differs from the one
suggested by (C.21). Since Y}, are functions of the coordinates, they undergo complex
conjugation under time reversal, and the related phase factor is (—)™,

Yim(n) = Yy, (0) = (=)™ Yi_m(n), (C.22)

instead of (—)'"™ as it would be in accordance with the rule (C.21), This was the reason
for the modified definition of spherical harmonics used by many authors, for example in
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Landau and Lifshits [LL65], where the extra factor i is added to the normal expression of
Yim- Then the complex conjugation agrees with (C.21) since (i')* = (—)"i". One should be
careful in using the phase conventions of various authors,

C.4 Two-component Neutrino and Fundamental
Symmetries

In the limit of zero mass, the neutrino reveals remarkable properties. For a massless
particle, there is no rest frame. In any frame it is moving with speed of light. It has

spin 1, and two independent spin states can be classified by taking the momentum axis

as that of the quantization. Actually this is the only physical direction associated with
a massless particle. Then the spin projection defines the helicity (2.22). A particle with
h = +1(h = —1) is similar to a right (left) screwdriver. These states are analogous to the
circularly polarized states of the photon (spin 1 with projections 41 onto the direction of
the wave propagation).

The combination of definite helicity and absence of mass produces new important
consequences. Helicity is a scalar with respect to rotations, but in general it is not a
Lorentz scalar. For example, it has no meaning at all in the rest frame. However, for a
massless particle, helicity is Lorentz-invariant, the momentum of a particle is transformed
together with its spin.

The experiments show that the neutrinos v (“particles”) are always left-polarized.
whereas the antineutrinos v (“antiparticles”) are always right-polarized. This statement
would be exact in the limit of zero mass: for nonzero mass, the degree of longitudinal
polarization is v/c but in the majority of physical situations the neutrino velocity is close
to the speed of light. The unique correlation of the lepton number, which distinguishes
particles from antiparticles, with helicity manifests that some fundamental symmetries
are violated in nature.

First of all, parity is not conserved any more. The space inversion changes the sign
of the helicity but does not convert the neutrino into the antineutrino. Thus, applying
the inversion P to the left-polarized neutrino, we obtain the nonexisting right-polarized
antineutrino—the symmetry with respect to the P operation is lost. Since the neutrinos
are produced in weak interactions only, we conclude that, in contrast to strong and elec-
tromagnetic interactions, the weak interactions do not conserve parity. If so, the exact
stationary states in the nuclear world, where all interactions are present simultaneously.
do not have in general certain parity I1. They are superpositions a|IT) + Bl—TIT). However.
because the admixtures of the opposite parity states are due to the weak interactions, typ-
ically one of the coefficients in this combination is very small, except for the cases where
some nuclear enhancement mechanisms significantly increase parity mixing.

One of the signatures of the parity nonconservation is the mixed character of the electro-
magnetic transitions between the two states. Assume, for example, that an unperturbed
excited state has quantum numbers J™ = 1%, and we observe the magnetic dipole radia-
tion (M1) to a lower state J™ = 0+, in agreement with the selection rules for M1-operators:
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AJ =1, no parity change. The electric dipole (E1) transition between these states, per-
mitted by angular momentum, is forbidden by parity. It becomes allowed because of the
admixtures of opposite parity to initial and final states. The corresponding amplitude is
proportional to the interference of two components of the wavefunctions, a; B3 or Bia;.
Another manifestation can be seen in nuclear reactions, when the cross sections of pro-
cesses interconnected by the inversion transformation turn out to be different. Sometimes
it is formulated as the statement that “the results of identical experiments in mirror-
reflected laboratories are not mirror-reflected.” Thus, in the first experiment where the
parity nonconservation was discovered Wu et al. [Wu57], B-decay of polarized nuclei ©°Co
(here the B electron is accompanied by the electronic antineutrino V)

’

0Co — Ni+ e~ + 7, (C.23)

the angular distribution of the decay electrons, ~(1 + a cos §), where the angle 6 is the one
between the electron momentum and the spin direction of the initial nucleus, displayed
the preference for the electrons moving opposite to the nuclear spin. This is essentially
the quantity of the same type as the helicity (B.40), pseudoscalar that shows that in the
mirror-reflected laboratory the angular distribution would be different, ~(1 — acos 6). An
impressive example was seen in scattering of longitudinally polarized slow neutrons off
unpolarized heavy nuclei, when the cross sections for different neutron helicities were
different (here a very large nuclear enhancement of the effect was observed)

C.5 Charge Conjugation

Another important discrete symmetry is related to the existence of particles and antipar-
ticles. The corresponding transformation C converts all particles into their antiparticles,
changing the signs of all charges (electric, baryonic, leptonic, strangeness, etc.) to the
opposite. Neutral particles such as 7° or photons (they have all charges equal to zero) are
transformed into themselves, and, because (2 = 1, we can distinguish the neutral parti-
cles with definite charge parity C = £1. The strong and electromagnetic interactions are
invariant under the C operation. An electron in an electromagnetic field behaves similarly
to a positron in the field of the opposite direction. In order to reveal the symmetry with
respect to charge conjugation, we have to invert the sign of the field, that is, to assign to
the quantum of the electromagnetic field, the photon, the charge parity C, = —1.

Among many other consequences of invariance under charge conjugation, one can
mention the so-called Furry theorem in QED: the processes whose only result is the change
of an even (odd) photon number to an odd (even) number, are forbidden. Thus, for exam-
ple, photon-photon interaction processes 2y — 3y are impossible. The neutral pion decays
into two photons, and therefore has positive charge parity.

The neutrino properties discussed earlier show that in weak interactions the charge
conjugation symmetry is also broken. There is no longer a full symmetry between particle
and antiparticle worlds because the C operation transforms the left neutrino into the
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nonexistent (in the limit of zero mass) left antineutrino. Both P and C symmetries are

destroyed simultaneously.
The picture is invariant with respect to the combined inversion CP. It means the conver-

sion of the left neutrino into the right antineutrino. The transition to the antiworld should

be accompanied by the mirror reflection; then the results of the corresponding experi-
ments would be the same. CP-invariance is nearly exact. As far as we know, it is violated
in rare decays of K-mesons (kaons), and similar B-mesons. The probability of CP-violating
decay of neutral kaons is only 0.2% of the probability of normal CP-conserving decay.
The production of neutrinos in the weak interactions shows that P- and C-symmetries
separately are completely violated. However, this is just the most distinct manifestation. As

we mentioned, parity nonconservation takes place in the nuclear weak processes without
a neutrino as well. The direct observation of the corresponding C-violation unfortunately

would require experiments with antinuclei.

C.6 Electric Dipole Moment

After we have discussed that the parity conservation is not the universal rule of particle and
nuclear interactions, we can return to the question of allowed and forbidden multipoles.
The existence of the electric dipole moment in a system with spin > 1 is permitted if
the restrictions related to the parity conservation are lifted. Of course we still keep the
restrictions imposed by the requirements of the rotational invariance.

However, the problem is more complicated. The dipole operator d is a polar vector. Its
expectation value can be calculated with the aid of the vector model. This gives for the

effective dipole operator for a particle of spin 1:

(d-s))

g2

d=

s= ;((d -s))s. (C.24)

The result is determined by the expectation value of the pseudoscalar quantity (d - s).
Since, as a result of the weak interactions, the stationary states have no certain parity, this
expectation value can differ from zero. However, a nonzero value of this quantity would

contradict time reversal invariance.

Indeed, the spinors |, m) with spin projection m are transformed according to (C.20}
under time reversal. The dipole moment d, like the coordinate vector r, is invariant under
T -transformation (“T-even”) while the spin vector s, like any angular momentum, is 7-
odd. Therefore the scalar product (d - s) is 7-odd. If T-invariance holds, the expectation
value of a time-reversed operator in a time-reversed state should be the same as before the

T -transformation,

(3.ml(d-s)[3,m) = (3,—m| — (d-s)|,—m)* = —(3, —m|(d - 5)|1/2, —m) (C.251

(expectation values of any Hermitian operator are real). At the same time, the quantity
(d - s) is a rotational scalar, and its expectation value is the same in all substates of the

multiplet. Thus, it is equal to zero. This derivation holds for any angular momentum J of
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the state (not necessarily spin }). The nonzero helicity o (p - s), in contrast to (C.25), can
exist being the product of the two 7-odd vectors.

We have shown that a nonzero electric dipole moment of a particle in a stationary state
would be a signature of the combination of the parity nonconservation along with the
violation of the time reversal invariance. The experiment up to now was unable to discover
adipole moment of a particle. Current data are compatible with zero at the uncertainty level
of 10723 ¢.cm for the proton, 1025 ¢.cm for the neutron, and 10~2° e-cm for the electron.

Recently, the anapole moment was discovered experimentally in the nucleus '**Cs. This
is a quantity characteristic to the current in the toroidal coil; the main contribution to the
anapole moment is due to the operator a = [r x s]. We see that a is a polar 7T-odd vector
which can exist in nuclear states with nonzero spin J, the corresponding effective operator
being

a= @D, (C.26)
JUJ+1)

The quantity (a-J) is a T-even pseudoscalar, and requires only parity nonconservation
but not 7-violation. The anapole moment was discovered by the parity violation in atomic
radiative transitions induced by the weak interactions between atomic electrons and the
nucleus.

C.7 CPT -Invariance

We conclude this appendix with brief mention of the famous CPT-theorem (R. Liiders and
W. Pauli). According to this theorem, any theory preserving the fundamental principles as
Lorentz invariance, unitarity (conservation of probability), and the proper relation between
the spin value and statistics of particles (integer values correspond to Bose-Einstein statis-
tics, while half-integer spins correspond to Fermi-Dirac statistics) is invariant with respect
to the combined application of charge conjugation C, spatial inversion P and time reversal
T Basically this means that antiparticles in the world obtained by the inversion of all four
Minkowski coordinates behave in the same way as particles in the original world.

It follows from the CPT-theorem that particles and their antiparticles have exactly equal
masses. If they are unstable, their full lifetimes are also exactly equal (in general, this is
not correct for partial lifetimes into specific decay channels). There is no experimental
evidence for a violation of the CPT-theorem.

Validity of the C’PT-theorem allows one to test fundamental symmetries in an indirect
way. For instance, the violation of the combined inversion CP in the decays of neutral
kaons is, according to the CPT-theorem, at the same time a signal of 7-noninvariance.
Presence in an experiment of 7-invariant effects violating parity, as in the case of the
anapole moment, proves that the charge symmetry C is violated as well. This statement
can be made with no direct measurements of similar processes with antimatter.



