Appendix D | Relativistic Quantum Mechanics

D.1 Lagrangians

For discrete systems the Hamilton principle yields the Lagrangian equations

SftzL ’ dt——0—>—d (—HL>——3L-—O D.1
. _ .
g (%, 4i) at \ 94, 4 , (D.1)

where the Lagrangian is the difference between the kinetic energy and the potential energy,
i.e. L= T — V. The Hamiltonian is given by H = ). pig; — L, where p; = 9L/94;.
If n; is the displacement of particle i from its equilibrium position (see figure D.1), then
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where a is the separation distance between the equilibrium positions of two neighboring

particles and L; is the linear Lagrangian density.

In continuum systems we can make the substitutions

m . .
a — dx, — — p = linear mass density,
a

Nit1 — N an
Bnr =0 A

- ka — Y = Young modulus. (D.3)
a ax

Now 7 is a function of x; n(x), and L = [ L dx is the Lagrangian density given by

£=1 ‘Z—Y(a—n)Z D.4

The variational principle, ch:lZ Ldt =0, (using n(t;) = n(t1) = 0) leads to the Euler-
Lagrange equations

d aL + d oL aL
dx d(dn/ox) 9t d(an/at) an

=0. (D.5)
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Figure D.1. Particles connected by identical springs.

For the example given above, the Euler-Lagrange equations become

3%n %y
Y— —p— =0, D.6
ax2  Moap (B-6)

which is the wave equation with velocity \/Y/x.
The Hamiltonian density is defined by

PN . 2
oL 1 1 an
H=h— —L=—un? —Y(-— =T+ V. D.7

Urm MY s (D7)

The quantity d£/d7 is known as the canonical momentum.

D.1.1 Covariance

Generalizing (D.5) to three dimensions, £ depends on ¢, dp/dx (k=1, 2, 3),and d¢/0t.
The Euler-Lagrange equations become

3 -
) L d aL oL

Y st =g, (D.8)
— dOx; 0 (dp/ax;) Ot A (dp/at) ¢

A 4-vector is defined by

bu = (b, b1, bz, b3) = (bo, b) (D.9)

with the convention that the Greek letters x, v, 4, etc. vary from 0 to 3, and the roman
letters i,j, k, etc. vary from 1 to 3.
The coordinate vector x,, is defined by

X = (X0, X1, X2, X3) = (ct, X),

whereas the coordinate vector x* is defined by

" = (—x9, %1, X3, x3) = (—ct, X). (D.11)

A Lorentz transformation is given by

X, = a,X,, (D.12)

where a repeated superscript and subscript has the meaning of a sum. Since a Lorentz
transformation preserves the length of a vector (that s, x'x, = x"x, ), we have

atay =8¢, (a7 =at, (D-13)

where §,, is a Kronecker delta. Thus,

Yx!.
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By definition, a 4-vector transforms like x,,., and

=g D.15
_auax‘l' ( . )

ad ad

Al et B
dx,  Ix, dx,

ax,

Thus, 9/9x, is also a 4-vector.

A scalar product is defined by

b-c="b'c, =b-c— by

and does not change in a Lorentz transformation

b.c = a,b,a,c, =8"byc, =b-c.

A second degree tensor transforms like

t, =aalt,, (D.18)

v

and similarly for tensors of higher dimension.
Equation (D.8) can be written as

d oL aL
- T | T3 =0 (D.19)
()x,, [d (drf)/dx,,)} d¢

This equation is covariant, that is, it has the same form in all systems of reference.

D.2 Electromagnetic Field

The Maxwell equations, in Heaviside-Lorentz units, are given by

V-E=p, (D.20)

(D.21)

In these units the fine-structure constant is e? /4mwhc >~ 1/137.04, which is equal to e?/hc
in the Gaussian system (cgs) and e?/ (47hceo) in MKS units. The fields and potentials in
these units are related to the corresponding quantities in the Gaussian system by 1/+/4x;
for example, § (|E|? + |B|?) in these units must read (1/87) (|E|* 4 |B|?) in Gaussian units.
However, expressions like p — eA/c are the same in both units, because

(Vare) (A/var) = eA. (D.22)

Introducing the antisymmetric tensor

0 By —B, —iE
—B 0 B —iE
Fpv = ’ e B (D.23)
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and the current

Ju= (Cp’ i),

(D.21) can be written in the compact form

(D.25)

Because F,, is antisymmetric, it obeys the relation dF,,/dx,0x, = 0, which means that

9
Au _y (D.26)
0x;,

The vector potential is introduced by

dA, 0A

ek T (D.27)
ax,, 0x,

and (D.20) can be written as

t}.u.v + t;u’,), + tl)..u = O,

where the third degree tensor t,,,, is defined by

_0F. 9 (i)A“ aA; )

t/\. LY - P —
- ax, ax, \ 0x; dx,

(D.29)

Using the Euler-Lagrange equations, it is straightforward to show that the Lagrangian

1 .
L =—7FuwFu+ (juA) /e (D-30)

reproduces the Maxwell equations (D.20) and (D.21).
We can rewrite (D.25) as

d [0A, P .
EIA‘,—‘*(‘—-)z—J—‘. (D.31)
ax, \ dx, c

We can redefine A, without changing F,,, as

, d
A:ew :Azld + "_X’ and (D.32)
ax,

where

x,

and thus,

—aA;}PW ’ Aﬁ]d O 0 D.34
dx, ax,, X ( )

Since the vector potential is used to simplify the calculations, we can therefore use a
simpler equation

0A, = . (D.35)
C
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where A, obeys

DA,
2~ (D.36)

dx,

Equation (D.36) is known as Lorentz condition.
But, even by using (D.36), the potential A, is not univocally determined. We can still
make an additional transformation of the form
JA

Ay A=Ayt o, (D.37)
o

where A obeys the equation

OA = 0. (D.38)

The transformation (D.37) is known as the gauge transformation.

D.3 Relativistic Equations

The energy momentum relation

E' = p* + m* = Hoy(x,t) = [p* + m*] ¥ (x,1), (D.39)
together with the quantization rules p = —iV and H, = i3,, leads to the wave equation
a} 2 2 D
a5~ ViEm [y =o. (D.40)

This is known as the Klein-Gordon equation. It is considered as the appropriate equation

for spin-zero particles, for example, the 7-mesons.

Another relativistic equation, proposed by Dirac, is linear in the space-time derivatives:

EAY
iw (x,t) = HoW (x,1). (D.41)
C
where
Ho= o= t oyt 4oyl +Bm (D.42)
= T |U)— o) — o3 — . R
T et T T 50

Above, a; and B are dimensionless constants, commuting with r and p. Defining

o = (a1,07,a3), (D43]

we get

Hy=a-p+ Bm. (D.44)

Applying the operator 9/dt in (D.41) gives
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To reduce this equation to the Klein-Gordon equation (for which E? = p? + m?), it is
necessary that

ajog + gy = {ak,uj} = 28y,
arf + Bay = {ap, B} =0,

= ol =p=1

(D.46)

These equations can only be satisfied if o; and B are matrices. Thus ¥ must be a vector
with N components:

Y
2}

v=| ¥3 |. (D.47)
YN

The matrices «; and 8 must have the properties

1. Hermiticity:

o =a;, =8 (D.48)

because Hy is Hermitian.. This, together with (D.46), implies that the eigenvectors of @; and
B must be 1.

2. Tra =Trp = 0.

3. N must have even dimension.
Both properties 3 and 4 follow directly by using (D.46).

4. N> 4.
N = 2isnot possible because the Pauli matrices (o, I) form a complete set of 2 x 2 matrices.

However, the matrix I always commutes and (D.46) cannot be satisfied. Thus, N = 4 is the
smallest possibility, and

V= (ivivsvi)-

. Representation of «; and 8:

The above conditions lead to many possible representations of «; and 8. The most popular
representation is

l_Oa,' ﬁ_lO D.50
a0 o )oe=(y ) (D50)

where oy, 1, and 0 in (D.50) are 2 x 2 matrices.
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D.3.1 Particle at rest

For a particle at rest p = 0 so that VW = 0 and

0D
iy (D) = pmd(x.b). (D.51)

In terms of the wave function components

dpy /ot 10

| ot 0t 00 L [ R (D.52)
d¢p3/ 0t 0 0 -1 0 &3 -3
dps /0t 0 0

These equations have 4 solutions given by

q)l — ’—lml

(D.54)

P, = 6+imt

We identify ®; and ®, as positive energy solutions for up and down spin states, respec-
tively. The other solutions, ®; and ®,, are negative energy solutions, or antiparticle solu-
tions, with spin up and down, respectively. We therefore see the necessity of 4 components.

D.3.2 Covariant form: y matrices

Defining the matrices

=8, v =pa y=pa, v'=("v), (D.55)

multiplying the Dirac equation by y°, and using g? = 1, we obtain

0 v
(WOT_ —y- —.) W (x,t) =mV(x,t),
ot l

(¥°po— ¥ - P) ¥ (x,1) = mW¥ (x,1). (D.56)

YipuV (x,t) = mV (x,t),

where p,, = i9,,.
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Table D.1: Bilinear covariants built with Dirac y

matrices.

| I Definition  Transformation Number

Y P

space vector 3

Y0 B time vector 1

1=1 identity scalar

ok Sy, y*] traceless tensor 6

¥s iy%yly2y?  pseudoscalar 1

ysy* ysy* pseudovector

Using (D.46) we can prove that

ylvy‘( _+_y/:y|- = {yl’yll} — Zg;u"
N\ 2
() =1 (=123, =1

yi==v. ¥% = (D.57)

The most popular representations of y are

. 0 o; 0 1 0 5 0 1
A , Y = s = . D.58

It is also useful to generalize the matrices o as

) .0 . 0 o
o= [ % oY —i =i %), (D.59)
0 Ok ag; 0

The indices (i, ], k) take values 1, 2, and 3 (or , y, 2), and can be cyclically permuted.

The ¢’s are Pauli matrices

0—01 U_O-i 0_1 0 D.60
1—10rz—i0.3—0_1. (D.60)

There are only 16 4 x 4 independent matrices. Using the notation I'; for these matrices,
one can show that they can all be built from the y matrices, as shown in table D.1.

The table also shows the transformation properties of WI'W. The spatial parts ¢
(i,j = 1,2,3) are related to spin, while the mixed space-time parts %, o010 are related
to the velocities (proportional to «). To emphasize these relations, we write

=00, (D.61)

where ¥ is seen as a four-dimensional generalization of the Pauli matrices.
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D.4 Probability and Current

Multiplying the Dirac equation to the left by W* and subtracting the result by the Hermitian

conjugate of this operation we get

%i) + V. (Vaw) = 0. (D.62)

This equation has the form of a continuity equation, where the probability is given by

p ==y 2+ Yo + Y31 + Y, (D.63)

and the current is given by

j=vav =vggav = Uyw.

Note that j is given in terms of the Dirac adjoint ¥ defined by

U =wig=wly.

The continuity equation can be expressed as 9, j* = 0, where

J = (p.j) = ¥y"w.

D.5 Wavefunction Transformation

The Lorentz transformations are given by

X = alxh, (D.67)

In a new referential O', ¥ (x'), is related to W (x) in the referential O, by

W (x') =L, (@) ¥ (%), (D.68)

where L, (a) changes only the components of W (x). The Dirac equation must be invariant
under this transformation. That is,

LW (x)
1 W = mvy (x),

i (%)
' ax'H

=mv' (x). (D.69)

Using

d 0
W (x) = L1 (a) W' (x), — —a (D.70)

axk T Moxm’

in (D.69), we get

5
iv"al a; L @)V () =mL! (@) ¥ (x). (D.71)
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Multiplying the equation above by L, (a), and because L, (a) commutes with the deriva-
tives and with a?, one gets

: _ L9, '
(@)L, (@) y" L (a)] iV (x') = mw’ (x'). (D.72)

Therefore, Lorentz invariance implies

[a:Ly @) y"L;" @)] = y*,

= a,y" =L, (a) y"L, (a). (D.73)

For a spin 1 particle, the rotation by an angle @ implies that

V'(¥) = Ur (@)W (x), where Ug(8)=¢ 10 =002, (D.74)

where 5/2 is the generator of infinitesimal rotations. Since the generalization of the Pauli

matrices o}, is given by equation ( D.61), we assume that the relativistic operator for rotations
in 3-dimensions, around the axis k, is in the form

Ug (0) = e Zu/2 (D.75)

To generalize (D.75) for Lorentz transformations, we imagine these transformations
as rotation in space-time and we replace o, the operator of infinitesimal rotations around
the axis k, by 0%, the generator of infinitesimal velocity transformations along an axis k.
We see that the rotation “angle” is imaginary. For transformations along an axis, there is

a rapidity parameter ). that determines the velocity u = u (1) and is additive for successive
transformations:

coshi =y, =(1-8)""" = (1-u)™, Ginh» = y.. (D.76)

In terms of this quantity, the Lorentz transformation along the x-axis, can be expressed
in terms of an imaginary angle:

x'=xcoshA —tsinhA, and ¢ = tcoshi — xsinh A, (D.77)

Anobserver Owho sees a particle moving with velocity v along x uses (D.77) todetermine
the rapidity of the particle and denotes it by 2¢. Similarly, the observer O’ sees the same
particle moving with velocity v and uses (D.77) to determine the rapidity, denoting it by
*o- We can show that the relation between the two velocities is

' a1 u(4) +v (ko)
14 ("~o) = ‘HT

thatis, A) = Ao + A. (D.78)

Thus, the parameter A is additive for transformations along an axis (as with rotations
around an axis). The transformation is “active,” and since the conventional Lorentz trans-

formation (D.67), (D.68) is passive, we have a sign to worry about. We assume that the
generalization of (D.75) is

L, (a) = L, (\) = exp [; %i}-.kam‘} , (D.79)
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where k is the axis for the velocity increase and the +(—) sign is for active (passive)
transformations. Expanding the potential in a series and using the relation

(o"“)z = (i) = —Tgxss (D.80)

we obtain the relation

1 Mk P
L, =exp [:F Ei,‘xkaw‘] = I cosh % F io% sinh 7" (D.81)

One can show that (D.73) works for v = 0, k, from the relations

|y0,00k] _ ka,UOk] =0,

L'Y°L, = e_iA*”Okyo = cosh Ayy? — sinh A"

k
= agy“ = yVyO - yvﬂvy .

LYY L, = wy* — nBuy’. (D.82)

Note that L, is not unitary, L, # L, !. This means that the normalization of W changes
under the transformation. However, L} = L, . This change in W is necessary to keep the
total probability constant, since a volume element also changes udder this transformation.
Although L is not equal to L;!

there is a simple relation between them:

v ?

L' = wLv. (D.83)

D.s.1 Bilinear covariants

In table D.1 we have 16 matrices that, when sandwiched between the Dirac spinor ¥ and
its adjoint W, transform as indicated. For example, the current

J (%) = W(x)y w(x) = Wi (x)y y W (x) (D.84)

is a 4-vector. For example, relating j*(x’) to j*(x), we have

M) = W)Yy (x) = W (x) LTy Oy A LW (x)
= Wi (x)y® (yOLIy®) Y LW (x) = W' (x)y° [L;'y" L] W(x)
= [ V1) = Ty ),

or

W

JH) = aflj" ().

Similarly, W (x)IW (x) is a scalar

UIv =¥y,

and Wo#'V is second degree tensor

V' (x)o " W' (x) = aliap W (x)0 P W (x). (D.88)
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D.s.2 Parity

The parity transform is defined by

PU(x) = W'(x') = W'(—x,1). (D.89)

To include parity as part of the Lorentz group operators, we have to find a 4 x 4 P matrix
with the property

P~'y'P=a(P), y*, wherea(P)=

Note that this is an improper Lorentz transformation, since det (a) = —1, while the
previous transformations were proper, with det (a) = 1. When a matrix P satisfying (D.89)
acts on a spinor ¥, the new PW has opposite intrinsic parity, thatis, P changes the internal
parts of the wavefunctions. The parity operator acting on the external part is different and
can have its own eigenvalues. For example, for the eigenstates of angular momentum, the
parity eigenvalues are the familiar (—1)".

The choice P = y° = B for the parity operator has the desired effect:

¥
123 ¥ V2

P =B = . D.91
V3 V3 —¥3 ( )

'z

This relation is the microscopic explanation for why fermions and antifermions have
opposite intrinsic parity in the Dirac theory.

The pseudoscalar object v and the pseudovector (or axial vector) y°y* of table D.1 behave
as a scalar a pseudoscalar under proper Lorentz transformations [det (a) = 1], but gaina
negative sign for parity transformations.

Py P =—y®, PTlyRP=—yiyR (D.92)

D.6 Plane Waves

In the Dirac theory, the absence of a positive energy solution is identified as an antiparticle.
Thus, it is conventional to revert to the spin in the negative energy eigenvectors so that it
refers to real antiparticles. For the particle at rest, this means

o = of) (0) =e™u” (0),  dy=d5) = U (0),

— CDE)I) — e.imlu(l‘) (0)7 o, = QB;) — e*i'"'u'._} 0), (D93)
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with

uy” (0) = w0 = w7 (0) = L w7 (0) = (D.94)

(=
S = O O
= O O O

The index 0 refers to the momentum, m to spin, and the argument (0) to the position
x. It is important to remember that the spinors for a particle at rest are base vectors in

which a general 4 x 1 Dirac spinor can be expanded.

For p # 0 the Dirac equation is

d
(iyoa—t + iy.V) P (x,t) = md (x,t). (D.95)

The factor mt in the exponent of (D.93) is the scalar product p*x, in the referential

where the particle is at rest. Using the covariance property, in another referential one has

O (x, ) = ¢ P54 p). (D.96)

We obtain the plane wave spinors u{® (p) doing a Lorentz transformation along the

z-axis, with the operator L,:

uP(p) = Ly () w2(0),

L, (%) = e¥%™/2 — [ cosh % F io% sinh % (D.97)

One can show that for a particle with momentum p,

A ) {E,+m
tanh — = P , cosh ﬁ = L4 ) (D.98)
2 E,+m 2 2m

and L, (1) can be rewritten as

[Ep+m a'p)
L, (\) = 1 . D.99

Replacing the explicit representation of the matrix « in eq. D.97, we get

0

1
Op=n| 2 =N D.100
v (p)= p: » U (p)= p- , (D.100)
Ep+m Ep+m
P ¢4
Ep+m - Ep+m

-

(D.101)

where

[Ep+m

P+ =px£ipy, N=, (D.102)
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These spinors u(*)(p) describe free particles with spin s = +3 (in their rest frame),

energy +E,, and 4-momentum p. (Note that the negative energy solutions have their
3-momenta reversed, according to the interpretation for the antiparticle solutions).

D.6.1 Summary of plane wave spinor properties

1. The normalized wavefunction is

D (%, 1) = e 5y B (). (D.103)

The space-time dependence is in the exponential, the spin dependence is in the spinor, and
p is not an operator.

2. The spin is a good quantum number only in the particle’s rest frame or for a motion along z.

If py = p, = 0, while p, # 0, the u's are eigenstates of ¥, but with contributions from the
small components.

3. The heliticity o - p is a good quantum number for these u's.

4. When (D.103) is inserted in the Dirac equation one obtains the equation for the free spinors

ulH (p):

(v pu F m) u)(p) =o0. (D.104)

Note again that p is not an operator, and that the equation above is a matricial equation.

- The explicit Dirac equations for the positive and enervative energies are:

[¥’po— v -p—m]uF(p) =0,
[=7°po — v+(=p) — m]u ) (p) = 0.

(D.105)

We see that the spinors of positive energy have energy and momentum opposite to the
spinors of negative energy.

6. The adjoint Dirac spinor #(p) = u'(p)y° satisfies the transposed Dirac equation:

WS (p) (v pu Fm) =0. (D.106)

7. The u's satisfy the Lorentz invariant orthogonality relations:

7 (p)ul") (p) = buwdic, (D.107)

where b = = for the positive and negative energy solutions.
8. The probability density p for the plane waves is

. i E
p =00 =ul(p)u (p) = Loy s, (D.108)
: m

Since p is proportional to the energy, it is not a Lorentz invariant.

9. The completeness relation is

> () (p) = L. (D.109)

b=%, s=1]

Thus, the mathematical completeness requires negative energy degrees of freedom even for
low-energy processes.
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10.The current

—(b) ! .
=5 (pyul () = Loyes = E£ﬁ5bb’555", (D.110)

P

has the expected plane wave property, that is, j = v,p, a group velocity times a density.

D.6.2 Projection operators

The operators

tyFpu+m
2m

Ax(p) = (D.111)

have the properties

Asulp) =u(p), A_u(p) =0,

A-v(p) = v(p),
AL=As, AA_=A_A,=0,
Ay +A- =1, (D.112)

Av(p) =0,

where we define the particle and antiparticle spinors as

usp) =ul(p),  vilp) = w7 (p). (D.113)

Using the u's and the v's as base vectors, we see the A, (A_) is a projection operator
that eliminates the antiparticle (particle) part of the wavefunction, filtering the particle
(antiparticle) part. Since the basis is complete, we have

Doliil=1L =) [us(p)i(p) — vs(p)os(p)] = I, (D.114)

which can be easily verified by substitution.

From the equations above, we get

Asp) = Zm(p)u(p L tm, (D.115)

2 n +
A-(p) =D _v(p)os(p) = %- (D.116)

s=1

D.7 Plane Wave Expansion

One can show that ,/m/ (VEp)<D§b) is normalized to unity, showing that the plane wave
satisfies the orthogonality conditions:

t E,V
/ dx {d>ib)(x)} ) (x) =5,,,,,555r"7. (D.117)

where the b's are
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Thus, a general solution of the general Dirac equation has the expansion

m (ox— 4 + T _ _
\.IJ(X, t) = Z K/—E_ [el(P I’Ot)ug )(p)b;;s)(p) +e (P P)f)ui )(P)bgs)(P)]
ps b

m i+ ipx (= -
=3 [ [ (b ) + el ) )]
P VE,

where the b's are expansion coefficients.

D.8 Electromagnetic Interaction

The interaction with the electromagnetic field is obtained by using the minimal coupling;
p* — p* — qA*. The Dirac Hamiltonian becomes

.
(La - qd)) W(x 1) = [a (p— gA) + pm] ¥(x.1). (D.119)

This equation incorporates the charge g with an external field. It is invariant by a gauge
transformation:

AR S AR — 3ty (x),  W(x) = ePW(x). (D.120)

We can remove the temporal dependence associated with a rest mass m, and splitting
W in upper and lower components.

_ —imt IIIU(X, t)
W(x,t) =e (dn,(x,t) ) (D.121)

In this equation, ¥y and V¥ are two-dimensional spinors (that is, 2 x 1, or Pauli) still
containing the temporal dependence of the kinetic energy. Replacing the above equation
in the Dirac equation (D.119) we obtain that the terms with & couple Yy and v, yielding

Yy

T =o0-(p—9A) VL +90Vu, (D.122)

2L =g (p—gA) Vu + agvL — 2myL (D.123)

D.g Pauli Equation

The assumption of time dependence (D.121) produces an asymmetric term proportional
to —2m in (D.123). This has two important consequences. The first is that in the nonrela-
tivistic limit, m — 0o, and 3y /3t becomes exceptionally large. This leads to the image of
a charge jumping back and forth between the positive and negative energy components
(known as Zitterbewegung). The second is that, if the kinetic energy is small compared to
its rest mass, the lower components ;. are small compared to the upper component. This
is formally seen solving (D.123) for ¥/
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o-(p—9gA i (0/0t) —
oy = (szq )W_L(r/(zi1 q9
Solving for | and replacing it in (D.122) for ¥y we get the Klein-Gordon equation.

An approximation for the lower component is obtained expanding the equation above

VL. (D.124)

in a power series on ratios between momentum, energy, and the rest mass m:

Y= Yo [0W°] + Y [OW)]+---,

o-(p—gA
Yio=0, yYnx %wu. (D.125)
m

We can approximately decouple ¥, and ¢y, inserting v, in (D.120):

Yy,
el

4 [ —ad)][o-(p-aa)] , (D.126)

= 4bu, + 2m

Using the relation

o-Ac-B=A-B+io-(AxB), (D.127)

we can rewrite (D.126) as

2
vy, (P—4A) q
"T) i TWJ/UO‘ ml_ﬂ'(v x A4+ A x V)]KI/U0+‘]¢U0 (D.128)

Since p is the operator —iV acting to the right, the terms V x Aand A x V do not cancel.
To calculate the gradient terms we use the vector identity

(VxA+AX VYYy =Vx (AYyy) + A x Vyy

= I/IUV XA+(V|/IU) XA+ A x Vl/lu

=vYu (VxA)=yyB. (D.129)

We thus obtain the Pauli equation,

; oy U
at

~ Hpvu,, (D.130)

which has the form of the Schrédinger equation, but with the Pauli Hamiltonian

(p—4A)’ ¢
Hp=—_T 9, Bygs. D.
)i m Zma + q¢ ( 131)

Although the Dirac equation automatically includes higher order terms than the Pauli
equation, we see that even in a lower approximation, the Dirac theory predicts a gyromag-
netic factor g = 2 for fermions. Specifically, knowing that the magnetic dipole interaction

with an external magnetic field is given by

H =—u-B, (D.132)

we can identify this with the second term of the Pauli Hamiltonian, eq. D.131, and we
deduce the magnetic dipole moment p and the g—factor as

n=—pupgS = —ppo (/‘B= %)

=>g=gp= 2, (D.133)
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where p is the Bohr magneton. Thus, the Dirac equation predicts that any particle with
spin ; has g = 2.

The prediction (D.133) agrees perfectly with the experiments for electrons and muons
in which case g = ¢ and m is the particle mass (e.g., my, > 205m,). The small deviation
from g = 2 for the electron, or the muon, is due to radiative corrections. In contrast, the
magnetic moments of strongly interaction particles, like protons and neutrons, are very
different from the Dirac predictions of 2 and 0 respectively:

&
2

= 2.7928474, % = —1.9130427. (D.134)

The deviations from the Dirac value up are characterized by the anomalous momen-
tum «,

M= up+Kkug. (D.135)

This anomalous magnetic interaction is included phenomenologically in the Dirac
theory by the addition of an explicit term —« F,,0"" /2 to the Hamiltonian. The nucleon
momenta can be explained, in principle, using the quark model.

D.9.1 Spin-orbit and Darwin terms

Higher order corrections beyond the Pauli Hamiltonian can be obtained by replacing v,
for ¥ in (D.122). One gets

v, >~ z (pz; 94) Yy — [i (878t ~ ngln[m (P— qA)]

Yu. (D.136)

The next step is to insert (D.136) in the equation for v, (D.122), and to identify the
right side as Hy/y. But, before that, the wave equation must be renormalized to make
the Hamiltonian Hermitian and therefore produce a correct nonrelativistic limit. After
resolving this complication, we get

- [%a‘ (V x E) + #a- (E x p)], (D.137)

We recognize the second term inside the first parenthesis as a relativistic correction to the
kinetic energy

2 4
p p
/pz+mz_m:__w+..., (D.138)

2m

This is familiar in atomic physics, where it slightly lowers energy levels compared to the
nonrelativistic values. The term o+ (V x E) in (D.137) is identically zero for a spherically
symmetric potential. But the second term is zero for a spherically symmetric potential.
But the term o- (E x p) contains the spin-orbit interaction responsible for the fine-structure
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effect of the atomic levels. To show this we rewrite this term as

q q aV(r)r
Hy = ——— E = ——0- -
0 4m20( xp) am2° ar r
1 aVv
=4 19V oy (D.139)
4m2 ar

The term p - E in (D.137), known as the Darwin term, is related to the Laplacian of the
central potential

Vi = =4 p. E=—V.VV(r) = —Lv2v () (D.140)

w“r 8m? 8m? 8m?

Because V2 (1/r) « 8 (r), this is a contact interaction and thus only affects the S states
in atoms. Further insight on the nature of this term can be obtained by considering a
charge that, when confined to a bound state, can oscillate between states of positive and
negative energies To take this assumption further, imagine that this Zitterbewegung leads
the charge to select a region in space of the size of its Compton wavelength Ar ~ 1/m
around a point r. As a consequence, the Hamiltonian contains an extra term to account
for this fluctuation:

H' >~ (V(r+ An) —(V(r))
v
:<v r)+—Ar+ ZAr,Ar arag> (V(r)
~ - (Ar) V2V vav. (D.141)
6m?

This indeed resembles (D.140).

Appendix

The values inside pa
line the error in the &

E.1 Constants

Electric charge

Planck constant

Speed of light

Gravitational constant
Boltzmann constant
Avogadro number
Molar volume

Faraday constant

Compton wavelength




