1.1 Nucleons

The scattering experiments made by Rutherford in 1911 [Rul1] led him to propose an

atomic model in which almost all the mass of the atom was contained in a small region

around its center called the nucleus. The nucleus should contain all the positive charge of

the atom, the rest of the atomic space being filled by the negative electron charges.
Rutherford could, in 1919 [Ru19], by means of the nuclear reaction

‘He+ ¥N — 70+ p, (L1)

detect the positive charge particles that compose the nucleus called protons. The proton,
with symbol p, is the nucleus of the hydrogen atom; it has charge +e of the same absolute
value as that of the electron, and mass

mp = 938.271998(38) MeV/c?, (1.2)

where the values in parentheses are the errors in the last two digits.

From study of the hydrogen molecule one can infer that the protons in the molecule
can be aligned in two different ways. The spins of the two protons can be parallel, as in
orthohydrogen, or antiparallel, as in parahydrogen. Each proton has two possible orientations

relative to the spin of the other proton, and like the electron the proton has spin 3.

In orthohydrogen the wavefunction is symmetric with respect to the interchange of the
spins of the two protons, since they have the same direction, and experiments show that the
wavefunction is antisymmetric with respect to the interchange of the spatial coordinates
of the protons. This justifies the wavefunction being antisymmetric with respect to the
complete interchange of the protons. In parahydrogen the wavefunction is also antisym-
metric with respect to the complete interchange of the two protons, being antisymmetric
with respect to the interchange of the spins of the protons and symmetric with respect to
the interchange of their spatial coordinates. This shows that the protons obey Fermi-Dirac
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statistics; they are fermions and the Pauli exclusion principle is applicable to them. At most
one proton can exist in a given quantum state.
The neutron, with symbol n, has charge zero, spin 3, and mass

my, = 939.565330(38) MeV/c?. (1.3)

In 1930, Bothe and Becker [BB30] discovered that a very penetrating radiation was
released when boron, beryllium, or lithium was bombarded with a-particles. At that time
it was thought that this penetrating radiation was y-rays (high-energy photons). In 1932,
Curie and Joliot [C]32] figured out that the radiation was able to pull out protons from
a hydrogen-rich material. They suggested that this was due to Compton scattering, that
is, the protons recoiled after scattering the y-rays. This hypothesis, however, meant that
the radiation consisted of extremely energetic y-rays, and no explanation could be given
for the origin of such high energies. Also in 1932, Chadwick [Ch32] showed, by means
of an experiment conducted at the Cavendish laboratory in Cambridge, that the protons
ejected from the hydrogen-rich material had collided with neutral particles with mass close
to the mass of the proton. These were neutrons, the neutral particles that composed the
penetrating radiation discovered by Bothe and Becker. The reaction that occurred when
beryllium was bombarded with «-particles was

tHe + jBe — Y¥C+ ¢n. (1.4)

The existence of the neutron was also necessary to explain some features of the molecular
spectrum showing that the wavefunctions of nitrogen molecules were symmetric with
respect to interchange of the two N nuclei. As a consequence, the "N nuclei were
bosons. This could not be explained if the *N nucleus were composed only of protons
and electrons, since 14 protons and 7 electrons are needed for that, which means an odd
number of fermions. A system made up of an odd number of fermions is a fermion, since
the interchange of two systems of this type can be made by the interchange of each of their
fermions, and each change of two fermions changes the sign of the total wavefunction.
In the same way, we can say that a system composed of an even number of fermions is
a boson. This shows that if the *N nucleus is formed by 7 protons and 7 neutrons it is a
boson, assuming that the neutron is a fermion. In this way, the study of the N; molecule
led Heitler and Hertzberg [HH29] to conclude that atomic nuclei are composed of protons
and neutrons and not of protons and electrons.

Several other studies established that neutrons obey the Pauli principle and thus are
fermions, having spin ;. We recall that particles with fractional spin (2n + 1)/2 are
fermions, and that particles with integer spin are bosons. Protons and neutrons have sim-
ilar properties in several aspects, and it is convenient to utilize the generic name nucleon

for both.

1.2 Nuclear Forces

The origin of the Coulomb force between charged particles is the exchange of photons
between them. This is represented by the Feynman diagram (a) of figure 1.1. In this diagram
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Photon

(a)

Figure 1.1 Diagrams that represent (a) the electromagnetic interaction, which occurs by
exchange of photons, and (b) the nuclear interaction, due to meson exchange. (c and d)
Virtual dissociation of the nucleons, giving rise to the anomalous magnetic moment.

lines oriented up represent the direction in which time increases. At some instant of time
the particles exchange a photon, which gives rise to attraction or repulsion between them.
The photon has zero mass and the Coulomb force is a long-range force.

The force that keeps the nucleus bound is the nuclear force. It acts between two nucleons
of any type and, in contrast to the Coulomb force, it is of short range. In 1935 Yukawa
[Yu35] suggested that the nuclear force has its origin in the exchange of particles with finite
rest mass between the nucleons. These particles are called mesons, and this situation is
described by the Feynman diagram of figure 1.1(b). In the emission of a meson with rest
mass M, the total energy of the nucleon-nucleon system is not conserved by the amount
AE = Mc2. From Heisenberg’s uncertainty principle, AE At = %, the exchanged meson
can exist during a time At (in which violation of energy conservation is allowed), such that

h h
AE - M
During this time the exchanged meson can travel at most a distance

h
R=cAt >~ —, (1.6)
Mc

since the velocity of light c, is the maximum velocity. Then, if the nuclear force can be

At~ (1.5)

described by meson exchange, the mesons would exist “virtually” during a time permit-
ted by the uncertainty principle. The nuclear force range would be approximately #/Mc.
Experimentally one finds that the nuclear force range is R = 10~ cm. Thus, an estimate
for the meson mass is

h
M= o = 0.35 x 107%* g ~ 200 MeV, (1.7)
C

where 1 MeV/c2 = 1.782 x 107% g (for brevity, one normally omits c?).

In 1936, Anderson and Neddermeyer [AN36] observed cosmic rays in a bubble chamber
and found a particle with mass approximately equal to that predicted by Yukawa. These
particles were investigated during the next ten years but, because their interaction with
nucleons was extremely weak, they could not be the Yukawa meson. This puzzle was
solved by Lattes, Muirhead, Powell, and Ochialini [La47]. They discovered that there are
two types of mesons: the yi-mesons and the 7-mesons. The 7 -meson interacts strongly with
nucleons, but has a very short lifetime and decays into a p-meson, the particle identified
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previously by Anderson. The muon, as it is known today, has a longer lifetime and does
not interact strongly with other particles. The muon does not enter into the description of
the nuclear force and is classified among the leptons, the family of light particles to which
the electron belongs.

The m-meson, known as the pion, is the particle predicted by Yukawa. Pions were
produced in the laboratory for the first time by Gardner and Lattes in 1948 [GL48], using
340 MeV a-particles from the University of California synchrocyclotron.

1.3 Pions

The pion exists in three charge states, 7+, 7°, and 7. The 7+ and 7~ have the same
mass, 139.56995(35) MeV, and the same mean lifetime, = 2.6 x 1085, and decay almost
exclusively by the process

rr"—»;t*—}-v,,, T = T+, (1.8)
where pu*, ™ are the positive and negative muons, v, is the muonic neutrino, and U, is
the corresponding antineutrino. Only a small fraction, 1.2 x 10~4, of pions decay by

atset v, 7T e 41, (1.9)

vielding, respectively, a positron (electron) and an electron neutrino (antineutrino). (Neu-
trinos are particles with zero charge and very small mass. Electron neutrinos have a
significant role in the B-decay theory; see chapter 8.)

The decay fraction in a given mode is called the branching ratio. Charged pions can also
decay as

”“*’F‘A"'f'l’u*'y: T u vty (1.10)

also with a branching ratio of 1.2 x 10~*.

The mass of the neutral pion 7° is 134.9764(6) MeV, a value 4.6 MeV smaller than that
of the charged pions. 7° decays as

7> y+y, (1.11)
with a branching ratio of 98.8 %, by

7' et te + v, (1.12)

with a branching ratio of 1.2 %, and by other much less probable processes. The 7 total
lifetime is (8.4 + 0.6) x 107V s.

The simplest way to produce pions involves collisions between nucleons:
ptp—>p+p+a’, p+p-pin+at,
p+tn—=>p+p+7_, p+n—p+n+x° (1.13)

Pion properties can also be investigated by reactions induced by them, like elastic
scattering,

To+p—n+p, (1.14)
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inelastic scattering,

7T +p—o>a’+a +p, (1.15)
or charge exchange reactions,

7" 4+p—a’+n (1.16)

The analysis of pion-nucleon and pion-deuteron reactions led to the conclusion that the

pion spin is zero. The pions are bosons and obey Bose statistics, required for the treatment
of particles with integer spin.

1.4 Antiparticles

For each particle in nature there is a corresponding antiparticle, with the same mass, and
with charge of the same magnitude and opposite sign. This concept was established around
1930 with the development of relativistic quantum mechanics by Dirac and had its first
experimental confirmation with the discovery of the positron (antielectron) by Anderson
[An32] in 1932. The proton antiparticle (antiproton) was detected by Chamberlain and
collaborators in 1955 [Ch55], using the 6 GeV bevatron at the University of California.

The first studies of the reaction P + p, where p represents the antiproton, have shown
that in the great majority of cases this reaction leads to the annihilation of the PP pair
with production of pions, but in 0.3% of cases it is able to form the nfi pair, where 7 is
the antiparticle of the neutron, or antineutron. It was in this way that, in 1956, Cork and
collaborators [Co56] first detected the antineutron, using antiprotons emerging from a
beryllium target bombarded with 6.2 GeV protons.

Antiprotons and antineutrons are antinucleons. The magnitude of every quantity associ-
ated to some particle is identical to that of the corresponding antiparticle, but, as we shall
see soon, there are, besides charge, other quantities for which the values for particles and
antiparticles have opposite signs.

The mesons 7+ and 7~ are antiparticles of each other. In this case it is not important
to define which is the particle and which is the antiparticle, since mesons are not normal

constituents of matter. In the case of 7°, particle and antiparticle coincide, since charge
and magnetic moment are zero.

1.5 Inversion and Parity

Apart from rotational invariance (discussed in Appendix A), a system can have another
important spatial symmetry, namely, that with respect to the inversion of coordinates. Let
the quantum state of a particle be described by the wavefunction W(r). The parity of this
state is connected to the properties of the wavefunction by an inversion of coordinates

r — —r.
If
W(—r1) = +W(r)
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we say that the state has positive parity, and if
W(—r1) = —W(r) (1.19)

we say that the state has negative parity. An inversion of coordinates about the origin is
represented in quantum mechanics by the operator IT, where

MW (r) = W(-r1). (1.20)
M is called the parity operator. The eigenvalues of IT are +1 (since 12 = 1):
M¥(r) = £Y(r). (1.21)

If the potential that acts on the set of particles is an even function, that is, V(r) = V(~T),
the parity operator commutes with the Hamiltonian and the parity remains constant in
time, that is, it is conserved.

From the analysis of a system of two particles 1 and 2 that do not interact, described by
the product wavefunction

WY (ry) ¥(rz), (1.22)

the parity of the system is the product of the parities of each particle. That is, the parity is
a multiplicative quantum number.

Besides the parity connected to its spatial state, a particle can also have an intrinsic
parity. In this case the total parity is the product of the intrinsic and spatial parities. In
processes where no particle is created or destroyed, the intrinsic parities of the particles
are irrelevant. In reactions where particles are created and destroyed, the application of
parity conservation must include the intrinsic parities of the particles.

Since IT = I, there is no distinction between the active and passive viewpoints (see
Appendix A). In Cartesian coordinates the inversion transformation means (x,y,z) —
(=x, —y, —z), whereas in spherical polar coordinates

(r.0,9) = (r.m—0,¢+m). (1.23)

Therefore sin 6 does not change, cos # changes sign, and the function e "¢ acquires the
factor (—)™.

Rotations commute with inversion, as can be easily understood from the geometrical
picture and checked formally. This implies that if a state belonging to a rotational multiplet
has a certain parity, this quantum number should be the same for all members of the
multiplet. For the spherical function Y; given by equations (A.7) and (A.89) of Appendix
A, we find parity (). Therefore we conclude that

1Yy (0) = Yim(—1) = (=)' Yip(n). (1.24)

If the particle has a positive intrinsic parity, the total parity will be (—1)". If the particle has
a negative intrinsic parity, the total parity will be (—1)"*!. The same result is clear for P,
which are polynomials of order [ in cos 6. In particular, for the backward direction

Pi(—1) = (). (1.25)
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The operators, such as r or p, acting on a state with a certain parity, change this value to
the opposite one. They can be called IT-odd operators.

For a particle in a spherically symmetric field, stationary wavefunctions have a certain
value of the orbital momentum I,

¥ (r) = Ri(r) Yim(n), (1.26)

where Ry(r) is a radial function. We see that parity for single-particle motion is uniquely
determined by the orbital momentum. This is not the case in many-body systems, where
total momentum and parity are independent in general.

From an analysis of pion and nucleon reactions, one concludes that the intrinsic parity
of the former is IT, = —1 and for the nucleons I1, = M, =+1.

1.6 Isospin and Baryonic Number

The elementary particles exist in groups of approximately the same mass, but with different
charges. The mass of the neutron, for example, is about the same as that of the proton,
and the mass of the neutral pion, 7°, is approximately equal to that of the charged pions,
n* and 7. In 1932, Heisenberg [He32] suggested that the proton and the neutron could
be seen as two charge states of a single particle, using the name nucleon to identify this
particle.

In the theory of atomic spectra, a state that has multiplicity 2s + 1 has spin s'. It is
common, however, to refer to the spin quantum number s simply as spin s (for more
details on multiplets, see Appendix A). This is also true for the orbital and total angular
momentum. One example is the Zeeman effect, which is the energy splitting among the
25 + 1 states of an atom in a magnetic field. The spin s is identified with the angular
momentum of the system, and operators for the components of this angular momentum,
Sx» Sy, Sz, can be defined. The quantum commutation rules are defined as

[Sx: Syl = ihsz: [S)u Sz] = ith, [521 Sx] - lhsy (127)

The nucleon has, relative to its charge, a multiplicity 2 x 1 + 1 = 2. By analogy with the
theory of atomic spectra, we create a quantity called isospin, t = 1, to obtain the multiplicity
2t + 1 = 2. Isospin cannot be identified with an angular momentum, and does not have
any connection with the spatial properties of the nucleon. Nevertheless, we can introduce
an isospin space, or charge space, where the isospin can be treated as a set of three
components ty, t, t., satisfying the same commutation rules as the spin

[te, ty] = ittt

[ty, t2] = ibty, [, t] = ilt,. (1.28)

Thus we can deal with the isospin in the same way we deal with the angular momentum.
Since the square of the spin, s?, has eigenvalues s(s + 1), the square of the isospin, t?, has
eigenvalues t(t + 1). Addition of the isospins of several particles can be treated with the

I The spin is a vector with modulush\x"s—(s +1).

Toe2s—-1sa
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vector model for addition, used in atomic spectra theory. For example, when we add two
spins 1, the total spin can be 0 or 1. This is also the case of the sum of isospins of two
nucleons (each one has spin J).

The 2s + 1 states of a system with spin s are denoted by the 2s + 1 distinct values of the

= component of s (in units of #):
s:=-s,—s+1,..., s—1,s. (1.29)

By analogy, the 2t + 1 states of a system with isospin t are denoted by the 2t + 1 distinct
values of the t, component,

bo=—t, —t+1, ..., t—1,¢ (1.30)

The direction of the third axis in charge space is chosen in such a way that t, = +; for the
proton and t, = —3 for the neutron.
The nucleons can be represented by a “two-level" system with two basis states

~(! ~(° 1.31
=\ o) T\ ) (131)

The states (1.31) have a certain electric charge z, = 1 and z, = 0 in units of ¢, that is, they
are the eigenstates of the charge operator Q. Referring to the basis (1.31), in analogy to the
usual spin (A.86), as z-representation, we can say that this quantization axis is related to
the interaction with the electromagnetic field that allows one to distinguish between the
two charge states of the nucleon.

Let us call the spinor space represented by the basis vectors (1.31) charge space. All
operators in this space are 2 x 2 matrices as in spinor states of a spin % particle. We can
construct the full set of matrices acting in this two-dimensional space of the unit matrix
and matrices 71,3 defined exactly as the Pauli matrices (A.82) in spin space. Evidently, the

charge operator is

1 0 1
Q=(0 0)=5(1+n~)- (1.32)

We can also introduce the off-diagonal operators inducing transitions between the charge
states of the nucleon. The operator raising the charge is

01 0 (1.33)
L= , T4p=0, T n=p; .
+ 0 0 +P p
the lowering operator is
00 (t4)' 0 (1.34)
.= =(ry)', t-p=n, 1_n=0. .
1 0 i p

The operators 7. are built of the Pauli matrices
Ty = T, £ iTy, (1.35)

in the same way as the raising and lowering operators J+ = J, = iJ, of any angular momen-
tum operator, as explained in Appendix A. We can combine the matrices t, , ; into a matrix
“vector” T that is completely analogous to the vector o of spin Pauli matrices.
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Continuing this analogy, we speak about the isospin of the nucleon

t= Et, (1.36)

which acts in 2 x 2 “isospace” with the basis (1.31), where the basis states have a certain
charge

1
Z=3+t. (1.37)

The correct full spelling of the “isospin” is “isobaric” spin, which unifies the isobars, these
being states with the same mass number, as in, for instance, the proton and the neutron or
nuclei with the same sum A = Z + N of the proton and neutron numbers that coincides
with the total baryonic charge B of a nucleus, but not “isotopic,” which would relate the
isotopes having the same electric charge Z at different masses A. In isospin language, the
proton and neutron are the states with different projection of the isospin onto the z-axis
of isospace,

1 1
t;p: ip, t;n: —in. (138)

Here we use the convention accepted in particle physics. In nuclear physics the isospin
projections are traditionally assigned in the opposite way, —3 for the proton, and +] for
the neutron. Then for stable nuclei, having as a rule more neutrons than protons, the
total projection of the isospin would be positive; the charge operator (1.37) is redefined
correspondingly.

The pion has three charge states and thus has isospin t = 1; the three pions form a
charge multiplet, or isospin multiplet, with multiplicity 2t + 1 = 3. The state t, = +1 is
attributed to the 7w+, t, = 0 to the 7%, and t, = —1 to the 7 ~. This is connected to the
convention that was adopted for the nucleons and is necessary for the validity of (1.39)
below.

The isospin magnitude is an invariant quantity in a system governed by the strong
interaction. In electromagnetic interactions this quantity is not necessarily conserved, and
we shall verify below that this is the only conservation law that has different behavior in
relation to these two forces.

The number of nucleons before and after a reaction is always the same (see, for example,
egs. (1.13) and (1.14)—(1.16). This suggests the introduction of a new quantity, B, called
baryonic number, that is always conserved in reactions. We attribute to the proton and to
the neutron the baryonic number B = 1, and to the antiproton and antineutron B = —1.
To the pions we ascribe B = 0 (also for electrons, neutrinos, muons, and photons). In this
way the conservation of baryonic number is extended to all reactions. This principle is
extended to the leptons, defining a leptonic number, which is also conserved in reactions.

From the isospin and baryonic number definition we can write the charge g, in units
of e, as

B
Z=1t,+

5 (1.39)
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Since the antiparticle of a particle of charge ¢ and baryonic number B has charge —q and
baryonic number — B, it must have also a third isospin component —t,, where t, is the
isospin z-component of the corresponding particle.

1.7 Isospin Invariance

The mirror symmetry of strong interaction implies invariance under the charge symme-
try transformation p <> n. By virtue of this symmetry the proton and neutron states are
degenerate. Since their electromagnetic properties are different, this is equivalent to the
statement that their mass difference comes exclusively from electromagnetic interactions,
supposedly on the quark level. The charge symmetry transformation is a particular case
of SU(2) transformations (see Appendix A). Moreover, isospin invariance assumes that the
strong Hamiltonian is invariant under all elements of the isospin group. In this case we
have full rotational invariance in isospin space, and the stationary states can be labeled by
the conserved quantum number total isospin, T:

T= Zta' (1.40)

which is the analog of the total angular momentum in isospace related to the eigenvalues
of the isospin “length,” T? = T(T + 1). t, represents the isospin of nucleon a.

Since the algebraic properties of spin and isospin are identical, the allowed values of T
are quantized to be integer (half-integer) in a system of an even (odd) number of nucleons.
They give rise to degenerate isomultiplets with given T that contain 2T + 1 states with
projections T, = —T,...,+T or, equivalently, with the charge [see (1.37)]

1 A
Z=Z(5+tm)=5+Tz, (1.41)

where t,, is the z-component of t,.

The isospin invariance of the strong interaction Hamiltonian H; can be written as the
conservation law

[T, Hs] = 0. (1.42)

In the case of stationary states, all 2T + 1 states of a multiplet would have the same energy
in the limit of exact isospin invariance. Let us emphasize that the states within a given
isomultiplet belong to different nuclei (the same A but different Z). They are frequently
called isobaric analog states (IAS). The conservation law (1.42) is certainly exact for the
component T; related to the electric charge, eq. (1.41). If we forget for a moment about
electromagnetic interactions that single out the z-axis and violate the isotropy of isospace,
we can classify all nuclear states by isomultiplets. All states in a given nucleus (the “vertical”
scale) have the same

1 A
I.=-(Z-N)=2Z-=. 1.4
2= 5 ) 3 (1.43)
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They belong to various isomultiplets (the “horizontal” scale). The allowed values of the
magnitude T of the isospin of the nucleus (Z, A) cannot be less than the value of projection
T, (1.43), but they cannot exceed the maximum value A/2,

%(Z—N)STE %(Z+N). (1.44)

We have already mentioned that the introduction of isospin does not increase the number
of nuclear degrees of freedom, or the number of possible states. This is just a convenient
classification associated with the invariance (1.42) of strong interactions. This classifica-
tion is actually related to the permutational symmetry of the many-body wavefunction in
the “normal” coordinate and spin variables. If the effects violating isospin invariance, in
particular, due to electromagnetic interactions, can be neglected, we have an approximate
isospin symmetry.

The concept of isospin SU(2) invariance is generalized to higher symmetries in quantum
chromodynamics (see below), where it is related to the fact that the two lightest quarks, u
(up) and d (down), have similar masses and interactions. In the approximation that neglects
the difference of the u, d quarks from the s (strange) quark, the carrier of the strangeness,
we have already three fundamental objects so that the corresponding invariance group is
SU(3), or SU(6) if the interactions do not depend on spins.

1.8 Magnetic Moment of the Nucleons

A charged particle rotating around an axis can be visualized as a system equivalent to
a small ring carrying an electric current. To this current is associated a magnetic dipole
moment u that is related to the particle angular momentum L through p = eL/2mc, where
¢ is the charge and m the mass of the particle. It is common to write

_ @

= , 1.45
1293 2me ( )

where the factor g; is introduced. It is called orbital g factor, equal to 1 for protons and 0
for neutrons.

However, as we have already discussed, a particle can have an intrinsic angular momen-
tum s. Thus it is fair to admit that an intrinsic magnetic moment can also be associated
to a particle, given by

€gs
s= 502,

o (1.46)

where the constant g, the spin g-factor, does not necessarily have the same value g; adequate
to classical variables, since s and ks have pure quantum origin. In fact, from a relativistic

treatment of quantum mechanics using the Dirac equation, a value gs = 2 for spin ;
charged particles is obtained [Di30]
The universal constant (using m as the proton mass)
eh Joule m?
= — =505x10"%7 =2 1.47
KN 2me % Weber (1.47)
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is known as the nuclear magneton, by analogy with the Bohr magneton defined for the
electron. The nuclear magneton is used as a unit for magnetic moments and itis convenient
to note that, owing to the proton mass in the denominator, its value is about 1800 times
less than its electronic equivalent. With it, (1.45) and (1.46) can be rewritten as
L s

pr=ungey and s = Ungsy. (1.48)

The prediction gg = 2 obtained by Dirac works very well for the electron. For the proton
and the neutron the values found experimentally are

gs = 5.5856 (proton) and gs = —3.8262 (neutron), (1.49)

when the expected values from Dirac’s theory would be 2 and 0. The discrepancy above
can be explained in part by the virtual dissociation of the nucleons. As we have already
established, the uncertainty principle allows a nucleon to emit and reabsorb a pion during
atime interval At ~ #i/m,c?, as described by the diagrams of figure 1.1b,c. One proton can
be dissociated into a neutron and a 7. The & has spin zero and does not have intrinsic
magnetic moment, but it can contribute to the proton magnetic moment due to its orbiting
around the neutron. Supposing that this process conserves angular momentum and parity,
one can show that the =+ orbiting is in the same direction as the initial intrinsic spin of
the proton. The effect of the virtual production of a 7 is therefore to increase the proton
magnetic moment, as is experimentally observed.

In the same way the 7~ contributes to the neutron magnetic moment. There is a small
contribution to the magnetic moment due to the proton orbit and spin but the largest con-
tribution comes from the 7~ orbiting, due to its small mass; the orbital magnetic moment
depends on the inverse of the mass of the particle in orbit (1.47), and m, < m,. The con-
tribution is negative due to the charge of the 7 ~ and because it orbits in the same direction
as the neutron spin. So, we expect that the neutron intrinsic magnetic moment is less than
zero, as is experimentally verified. This analysis is only qualitative. A more exact explana-
tion of the magnetic moments of the nucleons is still the object of theoretical studies.

The antiproton, being a particle with negative charge, has magnetic dipole moment
in a direction opposite to that of the angular momentum and thus g; = —1. The values
given by (1.49) also have opposite sign for the antiparticles. Then, the antiproton magnetic
moment points contrary to the spin and that of the antineutron stays aligned to the spin.

1.9 Strangeness and Hypercharge

In 1947, particles with properties different from those known at that time were found in
cosmic rays. They were afterward (1953) observed in the laboratory. In cloud chambers,
where their trajectories were detected and photographed, they appeared as a pair of tracks
in form of a V, making clear that two particles were created simultaneously. These strange
particles or V-particles, as they were initially known, form two distinct groups. One of them
consists of particles heavier than the nucleons and decaying into them, called hyperons.
The symbols A, =, E, and Q are utilized for the several hyperons. Because they decay into
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nucleons, hyperons are baryons and have baryonic number 1. They also have spin 3, and
they are fermions. The other group of strange particles are bosons with spin 0 and are
called K-mesons, or kaons.

Typical reactions involving strange particles are

A°—>p+7r_, /\0—>n+n°.
27 - /\0+71_, EO——>A0+JTO,
K()—>H"+7r_, A’ > - +p,
T~ +p— K4 A°, (1.50)

The interaction time for reactions involving nucleons and pions is obtained approximately
by the time in which a pion, with velocity near that of light, travels a distance equal to the
nuclear force range. This time is about r/c = 107% s, which is much less than the mean
lifetime of the A% (7 = 2.5 x 10-10 ), or of other strange particles. On the other side, it
was found experimentally that the rate at which or other strange particles are produced is
consistent with an interaction time on the order of 10~ 5. To explain why strange particles
were produced so fast but decayed so slowly, Pais [Pa52] suggested that strong interactions
(those acting between nucleons, or between pions and nucleons) are responsible for the
production of strange particles. The reactions in which only one strange particle takes part,
as in its decay, would proceed through weak interactions, similar to B-decay or the decay
of muons or charged pions.

In 1953, Gell-Mann [Ge53] and Nishijima and Nakano [NN53] showed that the pro-
duction of strange particles could be explained by the introduction of a new quantum
number, strangeness, and postulating that strangeness is conserved in strong interactions.
For example, two strange particles, but with opposite strangeness, could be produced by
means of the strong interaction in a collision between a pion and a nucleon. Strangeness,
however, is not conserved in the decay of a strange particle, and this decay is attributed to
the weak interaction.

The great number of hadrons, as shown in table 1.1, and their apparently complex distri-
bution led several investigators to question if these particles might be complex structures
composed by the union of simpler entities. Models were proposed for those structures
and, after some unsuccessful attempts, a model independently created by M. Gell-Mann
[Ge64] and G. Zweig [Zw64], in 1964 imposed itself and has gained credibility over time.
The inspiration for that model came from the symmetries observed when one put mesons
and baryons in plots of strangeness versus the tz-component of isospin, as shown in figure
1.2. The type of observed symmetry is a characteristic of the group called SU(3), where three
basic elements can generate singlets (the mesons 5’ and ), octets (the other eight mesons
of the figures above and the eight spin ] baryons) and decuplets (the spin 4 baryons).
These three basic elements, initially conceived only as mathematical entities able to gener-
ate the necessary symmetries, ended up acquiring the status of real elementary particles,
for which Gell-Mann coined the name quarks. To obtain hadronic properties, these three
quarks, presented in the flavors up, down, and strange, must have the characteristic values
shown in table 2.
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Table 1.1 Attributes of particles that interact strongly.
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n B S t t, s m (MeV/c?)
p +1 0 1/2 +1/2 1/2 938.272
n +1 0 1/2 -1/2 1/2 939.565
P -1 0 1/2 -1/2 1/2 938.272
i -1 0 1/2 +1/2 1/2 939.565
A +1 -1 0 0 1/2 1115.68
T+ +1 -1 1 +1 1/2 1189.4
0 +1 -1 1 0 1/2 1192.6
- +1 ~1 1 ~1 1/2 1197.4
A -1 +1 0 0 1/2 1115.68
pRs -1 +1 1 -1 1/2 1189.4
0 ~1 +1 1 0 1/2 1192.6
- -1 +1 1 +1 1/2 1197.4
g0 +1 -2 1/2 +1/2 1/2 1315
o +1 -2 1/2 -1/2 1/2 1321

g0 -1 +2 1/2 -1/2 1/2 1315
o -1 +2 1/2 +1/2 1/2 1321

Q 1 -3 0 0 3/2 1672

7 0 0 1 0 0 134.976
nt 0 0 1 +1 0 139.567
n 0 0 1 -1 0 139.567
K+ 0 +1 1/2 +1/2 0 493.7
K- 0 -1 1/2 -1/2 0 493.7
K? 0 +1 1/2 -1/2 0 497.7
K° 0 -1 1/2 +1/2 0 497.7

Notes: The baryons are the particles with baryonic number B # 0; the mesons have B = 0.
S is strangeness, t the isotopic spin and ¢, its projection; s is the particle spin and m its mass.
Baryons have positive intrinsic parity; mesons have negative ones.
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Spin 0 mesons §— Spin 1 mesons
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Figure 1.2 Strangeness versus t,-component of isospin for the several types of hadrons.

The most striking fact is that, for the first time, the existence of particles with fractional
charge (a fraction of the electron charge) is admitted. We can in this way construct a
nucleon by composing three quarks (neutron = udd), and it is natural to attribute to
quarks a baryonic number B = % The pions, in turn, are obtained by the conjunction of
a quark and an antiquark, (7* = ud), (7% = dd), (v~ = di), where the properties of the
antiparticle for the quarks are obtained in the conventional way.

To reproduce the other baryons and mesons, the strange quarks have to play a role,
and a hyperon like X°, for example, has the constitution (£° = uds), while a meson has
the constitution (K* = us). It is convenient to say at this point that a certain combination
of quarks does not necessarily lead to only one particle. In the case of the combination
above, we also have the possibility to build the hyperon (£*° = uds). The reason for this is
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Table 1.2 Quark characteristic quantum numbers.

Flavor Charge Spin Strangeness

up +2/3 1/2 0

down -1/3 1/2

strange -1/3 1/2 -1

that, besides other quantum numbers that will be discussed later, a combination of three
termions can give rise to particles with different spin. If we consider as zero the quarks’
total orbital angular momentum, which is true for all particles we discussed, the total spin
of the three quarks can be } or 3. The hyperon £° corresponds to the first case and the
hyperon £*° to the second.

A first difficulty in the theory appears when we examine the particles (A** = uuu),
(A7 =ddd), (2~ = sss). Since the three quarks in each case are fermions with | = 0, it is
clear that at least two of them would be in the same quantum state, which violates the Pauli
principle. To overcome this difficulty, a new quantum number was introduced, color: the
quarks, besides the flavors up, down, or strange, would have a color, red (R), green (G), or
blue (B), or anticolor, R, G, or B. Itis clear that, in the same way as flavor, color has nothing
to do with the usual notion we have of that property. The introduction of this new quantum
number solves the above difficulty; since now a baryon like A** is written A** = ugucug,
the problems with the Pauli principle are eliminated. The addition of three new quantum
numbers increases enormously the possibility of construction of hadrons, but a new rule
comes to play, limiting the possible of color combinations: all the possible states of hadrons
are colorless, where colorless in this context means absence of color or white color. White
is obtained when, in a baryon, one adds three quarks, one of each color. In this sense
the analogy with the common colors works, since the addition of red, green, and blue
gives white. In a meson, absence of color results from the combination of a color and the
respective anticolor. Another way to present this property is to understand the anticolor
as the complementary color. In this case, the analogy with the common colors also works
and the pair color-anticolor also results in white.

The concept of color is not only useful to solve the problem with the Pauli principle. It has
a fundamental role in quark interaction processes. The accepted theory for this interaction
establishes that the force between quarks works by the exchange of massless particles,
with spin 1, called gluons. These gluons always carry one color and one different anticolor,
and in the mediation process they interchange the respective colors; one example is seen
in figure 1.3. One can also see in figure 1.4b that the gluons themselves can emit gluons.

The fields around hadrons where exchange forces act by means of colors are denomi-
nated color fields, and the gluons, the exchanged particles, turn out to be the field particles
of the strong interaction. In this task they replace the pions that, in the new scheme, are
composite particles. The fact that the gluons have colors and can interact mutually makes
the study of color fields (quantum chromodynamics) particularly complex.
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Figure 1.3 (a) Forces between quarks mediated by gluon exchange. (b) Diagram showing how
a quark B changes to a quark G, and vice-versa, by the exchange of a gluon GB.

Despite the success of the quark model, new difficulties arose and, in 1970, with the
purpose of explaining some decay times in disagreement with the predictions of the model,
S. L. Glashow, J. Iliopoulos, and L. Maiani [G170] proposed the existence of a fourth quark
whose flavor has received the designation charm (c). This ¢ quark has a charge of +2; it has
strangeness zero but has a new quantum number, the charm C, with an attributed value
C = 1. The prediction of quark c received experimental confirmation in 1974, when two
independentlaboratories detected a new particle, called ¥ by the Stanford linear accelerator
group (SLAC) and | by the Brookhaven National Laboratory team. The particle /¥, as it
is commonly designated, is interpreted as a cC state, called charmonium, by analogy with
positronium eé. The existence of particles with charm introduces some complications in
the symmetries of figure 1.2: an axis with the new quantum number is added and the new
symmetries have to be sought in three-dimensional space.

In 1977, a group of resonances in 10 GeV proton-proton reactions pointed to the exis-
tence of a new meson that received the name Y and that led to the proposition of a new
quark. This quark, b (from bottom or beauty), has charge — ] and a new quantum number,
beauty, B*. The quark b has B* = —1.

Theoretical reasons imply that quarks exist in pairs, and this led to a sixth flavor, which
corresponds to quark t (from top or true ), with charge +2. This quark was identified in
experiments conducted at Fermilab in 1993 [Ab94].

The theory of quarks, with its colors and flavors, has created a scheme in which a great
number of experimental facts can be explained. High energy electron beams have indeed
detected an internal structure in nucleons with all the features of quarks [Fr91]. How-
ever, one can never pull out a quark from a hadron and study its properties separately. To
eliminate this possibility, a theory of asymptotic freedom was developed confining quarks
permanently to the hadrons. One consequence is that their mass cannot be directly deter-
mined, since it depends on the binding energies, which are also unknown. The quark
model enjoys high prestige in the theory of elementary particles, and there is a substantial

reduction in the number of elementary particles, that is, point particles without an inter-
nal structure. These are the quarks, the leptons, and the field bosons. An outline of the
properties of these particles is shown in table 1.3.
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Table 1.3 Properties of the elementary particles.

Quarks Charge Spin Strangeness Charm Beauty Truth

u +2/3 1/2 0 0 0 0

d -1/3 1/2 0 0 0 0

~1/3 1/2

+2/3

1/2

~1/3 1/2

+2/3 1/2

Leptons Mass (MeV/c?) Charge Half-life (s)

e 0.511 ~1 1/2 00

v, 0 0 1/2 00

n

Mass
(GeV/c?)

Field

particles

Charge

Photon 0 0

W 81 1 1

VAL 93 0

Gluons 0 0

0

Graviton 0

Notes: In the upper table each quark can appear in three colors, R, G, and B. Only one

member of the particle-antiparticle pair appears in the table

1.10 Quantum Chromodynamics

It is well known that quantum chromodynamics (QCD) is the fundamental theory for

strongly interacting particles. In this section we give a brief description of QCD. The

formalism is best described in terms of the Lagrangian formalism. Within this approach,
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the E uler-Lagrangian equations

yield the equations of motion for the fundamental particles.
If the reader is not familiar wit

h relativistic quantum mechanics and the notation used in
this section, it is recommended to read Appendix D.

Strong interaction is indeed the stron
80% of the baryon masses

gest force of nature. It is responsible for over
» and thus for most of the mass of everything on Earth. Strong
interactions bind nucleons in nuclei, which, being then dressed with electrons and bound

into molecules by the much weaker electromagnetic force, give rise to the variety of the
physical world.

» but only in color neutral bound states (con-
ts place as part of the standard model of particle

see [HM84]). However, understanding the
physical world does not only mean understanding

mostly understanding how these constituents interact and bring into existence the entire
variety of physical objects composing the universe. Here, we try to explain why high energy
nuclear physics offers us unique tools to study QCD. _

QCD emerges when the naive quark model is combined with local SU(3) gauge invari-
ance. We will just summarize some of the main accomplishments in QCD. For an
introduction to the concepts discussed here, we refer to, e.g., [PS95]. One can define a
quark-state “vector” with three components (in this section [ use i — ¢ — 1)

its fundamental constituents; it means

’

qred(x)
q(x) = | g&reen(x)
thue(x)

(1.51)

where g«lr (x) are field qQuantities that depend on the Space-time coordinate x = (t,r). The
transition from quark model to QCD is made when one decides to treat color simil
the electric charge in electrodynamics. The entire structure of electrodynamics emerges
from the requirement of local gauge invariance, that is, invariance with respect to the
phase rotation of the electron field, exp(ia(x)), where the phase a depends on the space-
time coordinate. One can demand similar invariance for the quark fields, keeping in mind
that while there is only one electric charge in quantum electrodynamics (QED)

arly to

, there are

To implement this program, one requires the free quark Lagrangian,

d
Leree = Z Z q4(x) (iy,, Pyl m(,) q(x) , (1.52)
"

G=ud,s,... colors

to be invariant under rotations of the quark fields in color space,

U:g/(x) > Up(x)g*(x), (1.53)

withj, k € {1,2,3) (we always sum over repeated indices). Since the theory we build in this
way is invariant with respect to these “gauge” transforma
quantities must be gauge invariant. In (1.52), 8/0x, = (
4 x 4 Dirac matrices, defined in Appendix D.

tions, all physically meaningful
d/dt, V), and Yu = (Yo, %) are the
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The indices (i, ], k) can only have values 1, 2, 3 (or, equivalently, x, y, z), and the index
0 means the time component of the matrix y,, . The y-matrices are functions of the Pauli
matrices o (see Appendix D).

The contraction of two four-vectors is defined as A* B, = A°B® — A - B. In (1.52), §(x) is
a matrix multiplication of the complex conjugate of the transpose of (1.51) and the Dirac
matrix yy, that is, §(x) = g’ (x)yo (see Appendix D).

In electrodynamics, there is only one electric charge, and gauge transformation involves
a single phase factor, U = exp(ie(x)). In QCD, one has three different colors, and U
becomes a (complex-valued) unitary 3 x 3 matrix, thatis, U'U = UU" = 1, with determi-
nant Det U = 1. These matrices form the fundamental representation of the group SU(3),
where 3 is the number of colors, N = 3. The matrix U has N? — 1 = 8 independent ele-
ments and can therefore be parameterized in terms of the 8 generators T,: aef{l,..., 8}
of the fundamental representation of SU(3),

U(x) = exp (—ida(x)T*). (1.54)

By considering a transformation U that is infinitesimally close to the 1 element of the
group, it is easy to prove that the matrices T* must be Hermitian (T* = T*') and traceless
(tr T* = 0). The T*’s do not commute; instead, one defines the SU(3) structure constants

fne by the commutator
[T% TY] = ifup T (1.55)

These commutator terms have no analog in QED, which is based on the abelian gauge
group U(1). QCD is based on a non-abelian gauge group SU(3) and is thus called a non-
abelian gauge theory.

The generators T are normalized to

ETOTY = 1 (1.56)
- 2 ab» .

where 3,5 is the Kronecker symbol. Useful information about the algebra of color matrices,
and their explicit representations, can be found in many textbooks (see, e.g., [Fie89]).

Since U is x-dependent, the free quark Lagrangian (1.52) is not invariant under the
transformation (1.53). In order to preserve gauge invariance, one has to introduce, follow-
ing the familiar case of electrodynamics, the gauge (or “gluon”) field Ag.(x) and replace the
derivative in (1.52) with the so-called covariant derivative,

84g)(x) > Dijg'(x) = {850 — iAfi(v) | 4'(x), (157)

where 8" is the four-dimensional derivative 3* = (3/dt, V).

Note that the gauge field A,‘;(x) = Al T (x) as well as the covariant derivative are 3 x 3
matrices in color space. Note also that (1.57) differs from the definition often given in
textbooks, because we have absorbed the strong coupling constant in the field A#. With the
replacement given by (1.57), all changes to the Lagrangian under gauge transformations

cancel, provided A* transforms as
U : A*(x) = U(x)A*(x) U (%) +1U(x)9" U’ (x). (1.58)

(From now on, we will often not write the color indices explicitly.)
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Figure 1.4 Due to the non-abelian nature of QCD, gluons carry color charge and can
therefore interact with each other via these vertices.

The QCD Lagrangian then reads

1 ,
Lacp = ) (%) (iy, D* — my) g(x) — 2T GG (x), (1.59)
q

where the first term describes the dynamics of quarks and their couplings to gluons, while
the second term describes the dynamics of the gluon field. The strong coupling constant
g is the QCD analog of the elementary electric charge e in QED. The gluon field strength
tensor is given by '

C*(x) =i[D",D"] = 9" A" (x) — 9" A" (x) —i[A*(x), A" (x)]. (1.60)
This can also be written in terms of the color components A* of the gauge field,

Gy (x) = 0" A (x) — 9" Al (x) + fabe Ay (x) A (x). (1.61)

For a more complete presentation, see modern textbooks like [Fie89), [ESW96], [Mu87].

The crucial difference, as will become clear soon, between electrodynamics and QCD is
the presence of the commutator on the right-hand side of (1.60). This commutator gives
rise to the gluon-gluon interactions shown in figure 1.4 that make the QCD field equations
nonlinear: the color fields do not simply add like in electrodynamics. These nonlinearities
give rise to rich and nontrivial dynamics of strong interactions.

Let us now turn to the discussion of the dynamical properties of QCD. To understand the
dynamics of a field theory, one necessarily has to understand how the coupling constant
behaves as a function of distance. This behavior, in turn, is determined by the response
of the vacuum to the presence of external charge. The vacuum is the ground state of the
theory; however, quantum mechanics tells us that the “vacuum” is far from empty—the
uncertainty principle allows particle-antiparticle pairs to be present in the vacuum for a
period of time inversely proportional to their energy. In QED, the electron-positron pairs
have the effect of screening the electric charge; see figure 1.5. Thus, the electromagnetic
coupling constant increases toward shorter distances. The dependence of the charge on
distance (running coupling constant) is given by [HM84]

2
2= —2 (1.62)
1+ M 1 L
3 1o

which can be obtained by resuming (logarithmically divergent, and regularized at the
distance r) electron-positron loops dressing the virtual photon propagator.
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Figure 1.5 In QED, virtual electron-positron pairs from the vacuum
screen the bare charge of the electron. The larger the distance, the more
pairs are present to screen the bare charge and the electromagnetic cou-

pling decreases. Conversely, the coupling is larger when probed at short
distances.

The formula (1.62) has two surprising properties. First, at large distances r away from
the charge which is localized at ry, r > ry, where one can neglect unity in the denominator,
the “dressed” charge ¢(r) becomes independent of the value of the “bare” charge e(rp)—it
does not matter what the value of the charge at short distances is. Second, in the local
amit ry — 0, if we require the bare charge ¢(ro) to be finite, the effective charge vanishes
at any finite distance away from the bare charge! The screening of the charge in QED
does not allow one to reconcile the presence of interactions with the local limit of the
theory. This is a fundamental problem of QED, which shows that either i) it is not a truly
fundamental theory, or ii) (1.62), based on perturbation theory, in the strong coupling
regime gets replaced by some other expression with more acceptable behavior. The latter
possibility is quite likely, since at short distances the electric charge becomes very large
and its interactions with the electron-positron vacuum cannot be treated perturbatively.

Fortunately, because of the smallness of the physical coupling a.p(r) = €*(r)/(47) =
1 137, this fundamental problem of the theory manifests itself only at very short distances
~ €xp (—3/[8ctem]). Such short distances will probably always remain beyond the reach of
experiment, and one can safely apply QED as a truly effective theory.

In QCD, as we are now going to discuss, the situation is qualitatively different, and
corresponds to anti-screening—the charge is small at short distances and grows at larger
distances. This property of the theory is called asymptotic freedom [GW73], [Po73].
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While the derivation of the running coupling is conventionally performed by using field
theoretical perturbation theory, it is instructive to see how these results can be illustrated
by using the methods of condensed matter physics. Indeed, let us consider the vacuum as
a continuous medium with a dielectric constant . The dielectric constant is linked to the
magnetic permeability 1« and the speed of light ¢ by the relation

1

eu:c—Z:]. (1.63)

Thus, a screening medium (e > 1) will be diamagnetic (i < 1), and conversely a param-
agnetic medium (u > 1) will exhibit antiscreening, which leads to asymptotic freedom.
In order to calculate the running coupling constant, one has to calculate the magnetic
permeability of the vacuum. In QED one has (Fie89], [ESW96], [Mu87]

1 200, 1.64

D = — In — . .
€QED 3w M (1.64)
So why is the QCD vacuum paramagnetic while the QED vacuum is diamagnetic® The

energy density of a medium in the presence of an external magnetic field B is given by

1 2
u=——4nxB?, (1.65)
where the magnetic susceptibility x is defined by the relation
m=1+4mry. (1.66)

When electrons move in an external magnetic field, two competing effects determine the
sign of magnetic susceptibility:

* The electrons in the magnetic field move along quantized orbits, referred to as Landau
levels. The current originating from this movement produces a magnetic field with opposite
direction to the external field. This is the diamagnetic response, xy < 0.

* The electron spins align along the direction of the external B-field, leading to a paramagnetic
response (x > 0).

In QED, the diamagnetic effect is stronger, so the vacuum is screening the bare charges.
In QCD, however, gluons carry color charge. Since they have a larger spin (spin 1) than
quarks (or electrons), the paramagnetic effect dominates and the vacuum is antiscreening,

Based on the considerations given above, the energy density of the QCD vacuum in
the presence of an external color-magnetic field can be calculated by using the standard
formulas of quantum mechanics, see, for example, [LL65], by summing over Landau levels
and taking account of the fact that gluons and quarks give contributions of different sign.
Note that a summation over all Landau levels would lead to an infinite result for the energy
density. In order to avoid this divergence, one has to introduce a cutoff A with dimension
of mass. Only field modes with wavelength 1 > 1/A are taken into account. The upper
limit for 1 is given by the radius of the largest Landau orbit, ro ~ 1/,/gB, which is the only

dimensional scale in the problem; the summation thus is made over the wave lengths
satisfying
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1 1
— 251> . (1.67)
\ lgB| A
The result is [Nie81]
1 1IN, — 2N A2
D _ _—g2 e T oy, AT 1.68
Uiac 2 4872 g In ’gB]’ ( )

where Ny is the number of quark flavors, and N; = 3 is the number of colors. Comparing
this with (1.65) and (1.66), one can read off the magnetic permeability of the QCD vacuum,
1IN — 2Ny , A2

,QCD By _ ¢ f o2y, A7 1

U5 (B) =1+ T In !gBl > 1. (1.69)
The first term in the denominator (I1IN;) is the gluon contribution to the magnetic per-
meability. This term dominates over the quark contribution (2Nr) as long as the number
of flavors N is less than 17 and is responsible for asymptotic freedom.

The dielectric constant as a function of distance r is then given by

1
CD
G'.'Qac (r) = QCD

. (1.70)
Mvac (B) 1gBl—=1/r

The replacement ,/[gB] — 1/r follows from the fact that € and 2 in (1.70) should be
calculated from the same field modes: the dielectric constant €(r) could be calculated by
computing the vacuum energy in the presence of two static colored test particles located

ata distance r from each other. In this case, the maximum wavelength of field modes that
can contribute is of order r, so that

1
r>a> -
2AZ (1.71)
Combining egs. (1.67) and (1.71), we identify r = 1/, /|gB] and find
1
QP (r) = TN, —2N; N <1 (1.72)
T 2agz 8 IA)

With ag(r1)/as(r) = egé‘.p(rg)/egfb(rl) one finds to lowest order in « (the strong interac-
don coupling constant)

(X‘(Tz)

14 11N, — ZNJ' | r),). (1.73)
Tas(l’z) n r

ag(r) =

Apparently, if r; < r, then a(r)) < as(r2). The running of the coupling constant is shown
in figure 1.6, where Q ~ 1/r is the momentum transfer. The intuitive derivation given above
Ulustrates the original field-theoretical result of [GW73].

At high momentum transfer, corresponding to short distances, the coupling constant
thus becomes small and one can apply perturbation theory, see figure 1.6. There are a
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a Q)

1 10 100
Q[GeV]

Figure 1.6 The running coupling constant «s(Q2) as a. function of
momentum transfer Q2 determined from a variety of processes. The
figure is from [Bet00).

variety of processes that involve high momentum scales, for example, deep inelastic
scattering, Drell-Yan dilepton production, e+e “-annihilation into hadrons, production
of heavy quarks/quarkonia, high p; hadron production, . . .. QCD correctly predicts the
Q*-dependence of these so-called “hard” processes, which is a great success of the theory
[HM84].

While asymptotic freedom implies that the theory becomes simple and treatable at short
distances, it also tells us that at large distances the coupling becomes very strong. In this
regime we have no reason to believe in perturbation theory. In QED, as we have discussed
above, the strong coupling regime starts at extremely short distances beyond the reach of
current experiments—and this makes the “zero-charge” problem somewhat academic. In
QCD, the entire physical world around us is defined by the properties of the theory in the
strong coupling regime—and we have to construct accelerators to study it in the much
simpler “QED-like,” weak coupling limit.

We do not have to look far to find striking differences between the properties of QCD
at short and large distances: the elementary building blocks of QCD—the “fundamental”
fields appearing in the Lagrangian (1.59), quarks and gluons—do not exist in the physical
spectrum as asymptotic states. For some reason still unknown to us, all physical states
with finite energy appear to be color-singlet combinations of quarks and gluons, which
are thus always “confined” at rather short distances on the order of 1 fm. This prevents
us, at least in principle, from using well-developed formal S-matrix approaches based on
analyticity and unitarity to describe quark and gluon interactions.
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1.11 Exercises

1. a) Using the relativistic expression for the momentum-energy relation, find the de Broglie
wavelength 1 = h/p, for protons with kinetic energy 500 keV and 900 MeV. b) Repeat the

calculation using a nonrelativistic expression for the momentum. c) Repeat (a) and (b) for
electrons with the same energies.

2. For which kinetic energy does the proton have velocity equal to half that of light? Compare
with the result for the electron.

3- From the uncertainty principle ApAx ~ #, and the fact that a nucleon is confined within
e nucleus, what can be concluded about the energies of nucleons within the nucleus?

4- What is the minimum photon energy required to dissociate the deuteron? Take the
binding energy to be 2.224589 MeV.

§- Because pions had not been discovered in 1936 when Yukawa proposed the meson theory
of the nuclear force, it was suggested that the muon was Yukawa’s particle. What would the
-ange of the nuclear force be if this were true?

6. Using relativistic expressions for momentum and energy conservation, show that a proton

must have energy greater than 5.6 GeV to produce a proton-antiproton pair in a collision
with another proton at rest.

7- Using the mass-energy relation, find the kinetic energy released in the decays in (1.8).

&. Find the threshold energies for the following reactions in the laboratory system, assuming
that the initial proton is at rest:

@p+p = p+p+n°

b)p+p > p+n+nxt

(Qp+p = p+p+at+n-

(7 +p > p+p+n

9- Which of the following processes are absolutely forbidden?

@7°+n > 77 +p
byp+e” — y+y
(©n — pt+te +1,
@n — p+et+u,

€ y+p - f+nt
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10. Verify expression (1.39) for p, n, p, i, 7+, 7~, and 7°.

11. Assuming that the virtual pions of figure 1.1(c and d) describe a semicircle with diameter
1fm, find, using (1.45), the extra contribution for the magnetic dipole moment of the proton

and the neutron caused by the emission of a virtual pion (note that this is a very crude model

to explain the anomalous magnetic moment of protons and neutrons).

12. Which of the following processes cannot occur through the strong interaction?

(a) K= - 7~ +x°
by K +p - K +n

() B%4n > =T +p
(d)A°+n - = +p
() K +p = A%+n
H 7t +n - Kt +x0

13. Write a reaction involving the proton and the kaons (K*, K=, and K°) that obeys the
conservation laws and that leads to the creation of the hyperon Q~.

14. Use table 1.1 and show that the hyperon Q~ decay could not have any mode governed

by the strong interaction (that conserves S) that does not violate some conservation law.

For example, the decay @~ — p + 2K~ + K° conserves S but is energetically forbidden. The

particle 2~ decays, in fact, only by means of the weak force (which does not conserve S),
through the branching Q= — A + K= (69%), 2~ — E®+ 7~ (23%), and @~ — E~ + 7°
(8%).

15. Using relation (1.39), show that the quarks up and down are members of an isospin
doublet t, = £1/2.

16. Find the quark composition of particles in table 1.1.
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