## Physics 203

## Homework 3

1.) Show that two particle scattering at $90^{\circ}$ in the center-of-mass can only take place through partial waves of even angular momenta. Use this result and assume charge independence of the nuclear force to show, at any energy, that:

$$
\frac{d \sigma}{d \Omega}_{p p}\left(\theta_{c m}=90^{\circ}\right) \leq 4 \frac{d \sigma}{d \Omega}_{n p}\left(\theta_{c m}=90^{\circ}\right)
$$

2.) What are the possible values of orbital angular momentum, total intrinsic spin, and isospin for the ground state of the deuteron if it had turned out to have $J^{\pi}=0^{-}$instead of the measured value of $J^{\pi}=1^{+}$. Discuss the implications for the form of the nuclear force if the deuteron had $J^{\pi}=0^{-}$
3.) Consider the following two strong interaction processes:

$$
\begin{aligned}
& \text { (1) } \pi^{-}+p \rightarrow K^{0}+\Lambda^{0} \\
& \text { (2) } \pi^{0}+n \rightarrow K^{0}+\Lambda^{0} .
\end{aligned}
$$

Assuming charge independence and isospin conservation in these reactions, determine the isospin of the $K^{0}$ given that the $\Lambda^{0}$ has isospin 0 and that the ratio of the above two cross sections is $\sigma(1) / \sigma(2)=2$.
4.) Express the operator

$$
\hat{S}_{12}=\left(\frac{3}{r^{2}}\right)\left(\hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\mathbf{r}}\right)\left(\hat{\boldsymbol{\sigma}}_{2} \cdot \hat{\mathbf{r}}\right)-\hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\boldsymbol{\sigma}}_{2}
$$

in terms of $Y_{l m}$ 's and the spherical tensor components of the vector operators $\hat{\boldsymbol{\sigma}}_{1}$ and $\hat{\boldsymbol{\sigma}}_{2}$. Also show that you can reduce your result to a scalar product of a rank 2 operator in spin space and a rank 2 operator in coordinate space. (Hint: show that

$$
\hat{S}_{12}=\sqrt{24 \pi} \sum_{m}\langle 2,2 ; m,-m \mid 0,0\rangle\left(\hat{\boldsymbol{\sigma}}_{1} \mathrm{x} \hat{\boldsymbol{\sigma}}_{2}\right)_{2 m} Y_{2-m}
$$

5.) Supplemental Problem SP1 (see adjacent pdf).
6.) Bertulani Text Problem 3-11.

3-7. In classical electrodynamics, the scalar field $\phi(\boldsymbol{r})$ produced by an electron located at the origin is given by the Poisson equation

$$
\nabla^{2} \phi(r)=-4 \pi e \delta(r)
$$

Show that the radial dependence of the field is given by

$$
\phi(r)=\frac{e}{r}
$$

For a nucleon, the scalar field satisfies the Klein-Gordon equation

$$
\left(\nabla^{2}-\frac{1}{r_{0}^{2}}\right) \phi(r)=4 \pi g \delta(r)
$$

Show that the radial dependence of the field is given by

$$
\phi(r)=-g \frac{e^{-r / r_{0}}}{r}
$$

Derive that the range $r_{0}$ is given by the relation $r_{0}=\hbar / m c$ using the fact that the boson, with mass $m$, is a virtual particle and can therefore exist only for a time $\Delta t$ given by the Heisenberg uncertainty relation.

