Physics 203

Homework 4

1.) The central part of the nucleon-nucleon potential can be written as a sum of four terms:

$$
V(r)=-V_{0}\left[W(r)+B(r) \hat{P}_{\sigma}+M(r) \hat{P}_{x}+H(r) \hat{P}_{x} \hat{P}_{\sigma}\right]
$$

where \hat{P}_{σ} is the spin exchange operator and \hat{P}_{x} is the space coordinate exchange operator. Using the symmetry properties of the spin-singlet and triplet S and P states, determine the relation between the above interactions (W, B, M, H) and the four interactions: $V_{1 S}(r), V_{3 S}(r), V_{1 P}(r), V_{3 P}(r)$; corresponding to the nucleon-nucleon potentials with the nucleons in ${ }^{1} S,{ }^{3} S,{ }^{1} P,{ }^{3} P$ states respectively.
2.) Supplemental Problem 2 (SP2).
3.) Supplemental Problem 3 (SP3).
4.) Show that a N-N potential for the deuteron containing a tensor term of the form

$$
\hat{S}_{12}=\left(\frac{3}{r^{2}}\right)\left(\hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\mathbf{r}}\right)\left(\hat{\boldsymbol{\sigma}}_{2} \cdot \hat{\mathbf{r}}\right)-\hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\boldsymbol{\sigma}}_{2}
$$

can produce a mix of S - and D-states by calculating the effect of the \hat{S}_{12} operator on the two-nucleon angular momentum states with $L=0$ and $L=2$ for $J=1$ and $S=1$ fixed (i.e. ${ }^{3} S_{1},{ }^{3} D_{1}$). [Hint: Show that

$$
\begin{gathered}
\left.\hat{S}_{12}\right|^{3} S_{1}>=\left.\alpha\right|^{3} D_{1}>+\beta \mid{ }^{3} S_{1}>, \text { and } \\
\left.\hat{S}_{12}\right|^{3} D_{1}>=\gamma\left|{ }^{3} D_{1}>+\delta\right|^{3} S_{1}>
\end{gathered}
$$

by determining the coefficients $\alpha, \beta, \gamma, \delta$.]
5.) For a non-local potential $\hat{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$, the potential energy operator \hat{V} acting on the wave function ψ is

$$
\int \hat{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

Show that such a non-local potential is equivalent to a momentum (and hence velocity-) dependent potential. [Hint: consider momentum space transforms.]

