- For a velocity-independent two-body potential, the only two-body scalars that can be formed using operators $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$, $S = (\sigma_1 + \sigma_1)$ and $T = (\tau_1 + \tau_2)$ are r, $\sigma_1 \cdot \sigma_2$, $\tau_1 \cdot \tau_2$, $\sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$ and S_{12} , where $S_{12} = 3(\mathbf{r} \cdot \sigma_1)(\mathbf{r} \cdot \sigma_2)/r^2 (\sigma_1 \cdot \sigma_2)$. Show that the operators
 - $\begin{array}{lll} \text{(a)} & \boldsymbol{S} \cdot \boldsymbol{S} & \text{(b)} & (\boldsymbol{r} \cdot \boldsymbol{S})^2 \\ \text{(c)} & (\boldsymbol{r} \times \boldsymbol{S}) \cdot (\boldsymbol{r} \times \boldsymbol{S}) & \text{(d)} & (\boldsymbol{r} \times (\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2)) \cdot (\boldsymbol{r} \times (\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2)) \end{array}$

can be reduced to functions of these scalars. Give the symmetry argument of why scalar products $r \cdot S$ and $r \cdot T$ are not allowed for a nuclear potential.

With velocity or momentum dependence, the only additional operator required is $L \cdot S$, where $L = r \times p$ and $p = \frac{1}{2}(p_1 - p_2)$. Show that the following terms do not form independent scalars either: