SP

$$
\rightarrow \vec{S}=\frac{\vec{\sigma}_{1}+\sigma_{2}}{2}
$$

23. For a velocity-independent two-body potential, the only two-body scalars that \longrightarrow can be formed using operators $r=r_{1}-r_{2}, S\left(=\left(\sigma_{1}+\sigma\right)\right.$, , 2 d $r=\left(\tau_{1}+\tau_{2}\right)$ are r, $\vec{T}=\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}$ $\sigma_{1} \cdot \sigma_{2}, \tau_{1} \cdot \tau_{2}, \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}$ and S_{12}, where $S_{12}=3\left(\cdot \cdot \sigma_{1}\right)\left(r \cdot \sigma_{2}\right) / r^{2}-\left(\sigma_{1} \cdot \sigma_{2}\right)$. Show that the operators
(a) $S \cdot S$
(b) $(r \cdot S)^{2}$
(c) $(r \times S) \cdot(r \times S)$
(d) $\left(r \times\left(\sigma_{1}-\sigma_{2}\right)\right) \cdot\left(r \times\left(\sigma_{1}-\sigma_{2}\right)\right)$
can be reduced to functions of these scalars. Give the symmetry argument of why scalar products $\boldsymbol{r} \cdot \boldsymbol{S}$ and $\boldsymbol{r} \cdot \boldsymbol{T}$ are not allowed for a nuclear potential.

With velocity or momentum dependence, the only additional operator required is $L \cdot S$, where $L=r \times p$ and $p=\frac{1}{2}\left(p_{1}-p_{2}\right)$. Show that the following terms do not form independent scalars either:

$$
\begin{array}{ll}
& \begin{array}{l}
\text { (e) } r \times L \cdot p \\
\text { (d) }(r \cdot p)(r \cdot S) \\
\text { (W) }(r \cdot p)(L \cdot S)
\end{array} \\
& \text { (相) }(L \cdot S)(L \cdot L)
\end{array}
$$

