Studies of Fundamental Interactions with Trapped ⁸Li and ⁸B Ions

A. Pérez Galván¹

¹Argonne National Laboratory (Dated: February 2, 2015)

Measurements of the beta-neutrino angular correlation coefficient $(a_{\beta\nu})$ in β decay provide information of the presence of possible exotic interactions beyond the Standard Model. The ⁸Li-⁸B radioactive mirror nuclei represent a particularly attractive system for these studies due to their small masses, large *Q*-value, and a triple-correlation that enhances the sensitivity to detect so-called "New Physics." Furthermore, it is possible to search for the existence of Standard Model-forbidden Second-Class Currents and to test the Conserved-Vector-Current hypothesis by comparing correlation measurements in ⁸Li and ⁸B. In this talk I will describe the experiments carried out at Argonne National Laboratory to measure with high precision $a_{\beta\nu}$ with trapped ⁸Li and ⁸B ions and present the latests results of our effort to test the Standard Model at low energies. I will also present future plans of our ion trapping program to test discrete symmetries like Parity and Time-reversal.