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Abstract Quantum chromodynamics (QCD) reduces the strong interactions, in all their variety,
to a simple nonabelian gauge theory. It clearly and elegantly explains hadrons at short distances,
which has led to its universal acceptance. Since its advent, however, many of its long-distance,
emergent properties have been believed to be true, without having been demonstrated to be true.
This article reviews various results in this regime that have been established with lattice gauge
theory, directly from the QCD Lagrangian. This body of work sheds light on the origin of hadron
masses, its interplay with dynamical symmetry breaking, and on other intriguing features such
as the phase structure of QCD. Also, nonperturbative QCD is quantitatively important to many
aspects of particle physics (especially the quark flavor sector), nuclear physics, and astrophysics.
This review also surveys some of the most interesting connections to those subjects.
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1 Introduction

Quantum chromodynamics (QCD) is the modern theory of the strong nuclear
force. It is part of the Standard Model of elementary particles and the underpin-
ning of terrestrial and astronomical nuclear physics

The conception of QCD is rightly hailed as a triumph of reductionism, meld-
ing the quark model, the idea of color, and the parton model into a dynamical
quantum field theory. At the same time, the scope of QCD is rich in emergent
phenomena. Symmetries emerge in idealized limits: C, P , and T are exact when
the total “vacuum angle” θ̄ = 0; chiral symmetries emerge when two or more
quark masses vanish (1, 2); and heavy-quark symmetries are revealed as one or
more quark masses go to infinity (3,4). More remarkable still are the phenomena
that emerge at a dynamically generated energy scale ΛQCD, the “typical scale
of QCD.” Much of what is known about QCD in this nonperturbative regime
has long been based on belief. Evidence from high-energy scattering fostered
the opinion that QCD explains the strong interactions and, therefore, the belief
that QCD exhibits certain properties; otherwise, it would not be consistent with
lower-energy observations. These emergent phenomena—such as chiral symme-
try breaking, the generation of hadron masses that are much larger than the
quark masses, and the thermodynamic phase structure—are the most profound
phenomena of gauge theories. The primary aim of this review is to survey how
lattice QCD has enabled us to replace beliefs with knowledge. To do so, we
cover results that are interesting in their own right, influential in a wider arena,
qualitatively noteworthy, and/or quantitatively impressive.

The rest of this article is organized as follows. Section 2 introduces the QCD
Lagrangian and discusses how, in a general setting, to fix its free parameters.
Section 3 gives a short summary of lattice QCD methodology. Sections 4 and 5
discuss hadron masses and their connection to chiral symmetry. An output of
these calculations are the quark masses and the gauge coupling, which are dis-
cussed in Section 6, along with some timely results pertaining to flavor physics.
Section 7 presents some interesting properties of nucleons. Section 8 discusses
the phase structure of QCD. Section 9 offers some perspective. The appendix
identifies resources for readers who wish to start research in numerical lattice
gauge theory.

2 Quantum Chromodynamics

The (renormalized) Lagrangian of QCD has “1+nf +1” free parameters (where
nf is the number of quark flavors):

LQCD =
1

2g2
tr[FµνF

µν ]−
nf
∑

f=1

ψ̄f (/D +mf )ψf +
iθ̄

32π2
εµνρσ tr[FµνFρσ ], (1)

where Fµν is the gluon’s field strength, /D = γµ(∂
µ + Aµ), and ψf denotes the

quark field of flavor f . The first parameter is the gauge coupling g2; the next
nf parameters are the quark masses mf ; and the last parameter, θ̄, multiplies
an interaction that violates CP symmetry. Experiments have demonstrated the
existence of nf = 6 quarks. At energies below the top, bottom, and charm
thresholds, however, it is convenient and customary to absorb the short-distance
effects of these quarks into a shift of g2 and then take QCD with nf = 5, 4, or 3.
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The coupling g2 diminishes gradually with increasing energy, stemming from
virtual processes of gluons and the nf active quarks; this “running” is known as
asymptotic freedom (5,6).

In the Standard Model, quark masses arise from the matrix of Yukawa cou-
plings to the Higgs field, y. The matrix y can be brought into a form with real
eigenvalues, yf =

√
2mf/v, and an overall phase, arg det y. (Here, v = 246 GeV

is the Higgs field’s vacuum expectation value.) In this context, the coupling mul-
tiplying εµνρσ tr[FµνFρσ ] is altered: θ̄ = θ − arg det y, where θ is allowed in QCD
as soon as CP violation is admitted. Only the difference θ̄ is observable.

Before one can state that a mathematical theory describes or explains the
natural world, one must fix its free parameters with the corresponding number
of measurements, in this case 1+nf +1. Because the color of quarks and gluons
is confined, the free parameters of QCD must be connected to the properties of
QCD’s eigenstates, which are the color-singlet hadrons. From this perspective,
the parameters of QCDmay be fixed as follows. The electric-dipole moment of the
neutron is too small to measure, which leads to a bound θ̄ < 10−11. Such delicate
cancellation of θ and arg det y is a mystery, known as the strong CP problem (7).
For QCD calculations it means simply that we can set θ̄ = 0 with no significant
consequences. The rest of the parameters are tuned to reproduce 1 + nf specific
hadronic properties. Because the gauge coupling runs, the physical interpretation
of g2 is predicated on the energy at which it reaches a fiducial value, say, g2 = 1.
But the mathematics is, strictly speaking, dimensionless, so the energy at which
g2 = 1 obtains a physical meaning as a multiple (or fraction) of some standard
mass, such as the proton mass. In practice, it is wiser to choose the standard
mass to be insensitive to the quark masses. Finally, the nf quark masses are
best related to nf hadron masses that depend sensitively on them; for example,
the kaon mass is used to tune the strange-quark mass, because M2

K ∝ ms. With
lattice gauge theory (8), one has a tool to relate the QCD Lagrangian directly to
such hadronic properties and, thereby fix the parameters. Hadronic properties,
by the way, always fix the parameters of QCD. The top quark mass, for example,
is measured at the Tevatron via the four-momenta of hadrons in jets.

3 Numerical Lattice QCD

Lattice gauge theory (8) was invented in an attempt to understand asymptotic
freedom without gauge-fixing and ghosts (9). The key innovation is to formulate
nonabelian gauge invariance on a space-time lattice. Then the functional integrals
defining QCD correlation functions are well defined,

〈•〉 = 1

Z

∫

DADψDψ̄ [•] exp (−S) , (2)

because DU , Dψ, and Dψ̄ are products of a countable number of individual
differentials. Here S =

∫

d4xLQCD is the action, • is just about any gauge-
invariant product of fields, and Z ensures that 〈1〉 = 1. This formulation is
formally equivalent to classical statistical mechanics, which allows theorists to
apply a larger tool kit to quantum field theory. For example, Wilson (8) used a
strong-coupling expansion to lowest order in 1/g2 to demonstrate confinement.

The results presented below have been obtained by integrating expressions of
the form (2) on big computers with Monte Carlo methods. Lattice gauge theory
defines QCD mathematically and, thus, in principle provides an algorithm for
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computing anything. Nevertheless, the computer imposes practical constraints.
To compute anything within a human lifetime, the integrals are defined at imagi-
nary time, t = −ix4, which turns Feynman’s phase factor into the damped expo-
nential of Equation 2. A computer, obviously, has finite memory and processing
power, so the spatial volume and time extent of the lattice must be finite.

These limitations do not impair the computation of many important classes
of quantities. The imaginary time imposes no problem whatsoever for static
quantities. The finite volume introduces errors in one-particle states that are
exponentially suppressed and, hence, a minor source of uncertainty. In two-
particle states, the finite-volume effects are stronger, but the volume dependence
yields information such as scattering lengths. Similarly, effects of the finite time
extent are exponentially suppressed, except in thermodynamics, where it becomes
a tool. Finally, the continuum limit must be taken as part of the renormalization
procedure (10,11).

From Equation 2, it is straightforward to derive some simple results for corre-
lation functions. The two-point function is

〈π(x4)π†(0)〉 =
∑

n

|〈0|π̂|πn〉|2e−mπnx4 , (3)

where π is a composite field of definite quantum numbers (e.g., of the pion), and
the sum ranges over all radial excitations. For a large enough time separation x4,
a fit to an exponential yields the lowest-lying mπ1

and |〈0|π̂|π1〉|. By using a
larger set of operators, one can extend this method to compute excited-state
properties. For a transition with no hadrons in the final state, as in leptonic
decays, one can simply replace π(x4) with a current J ,

〈J(x4)π†(0)〉 =
∑

n

〈0|Ĵ |πn〉〈πn|π̂†|0〉e−mπnx4 (4)

in which the only new information is 〈0|Ĵ |πn〉, yielding for large x4 the decay
matrix element of the lowest-lying state. For a transition with one hadron in
the final state, such as one from a B meson to a pion, one needs a three-point
function,

〈π(x4)J(y4)B†(0)〉 =
∑

mn

〈0|π̂|πm〉〈πn|Ĵ |Bm〉〈Bm|B̂†|0〉e−mπn (x4−y4)−mBmy4 (5)

in which the new information is 〈πn|Ĵ |Bm〉, yielding for large x4, y4 the matrix
element between the lowest-lying states. We compute matrix elements for flavor-
changing processes, dark-matter detection, and nucleon structure in this way.

Equations (3)–(5) are derived by inserting complete sets of eigenstates of the
QCD Hamiltonian. The only assumption is that these eigenstates are hadrons.
Thus, every successful fit of these formulae for hadronic correlators provides a pos-

teriori incremental evidence that hadrons are indeed the eigenstates of QCD.
In all cases of interest, the fermion action is of the form ψ̄Mψ, where the space-

time matrix M is a discretization of the Dirac operator (plus quark mass). Then
the fermionic integration in Equation 2 can be carried out by hand:

〈•〉 = 1

Z

∫

DA [•′] detM exp (−Sgauge) . (6)

Here, the fermionic integration replaces ψiψ̄j in • with [M−1]ij to yield •′. Impor-
tance sampling, which is crucial, is feasible only if detM exp (−Sgauge) is positive.
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Table 1: Pattern of chiral symmetry breaking for nf lattice fermion fields.

Formulation Flavor×space-time ⊂ continuum limit
Staggered (14,15) U(1)nf × Γ4 ⋉ SW4 ⊂ SU(4nf )× SU(4nf )× SO(4)
Rooted (16) U(1)nf × Γ4 ⋉ SW4 ⊂ SU(nf )× SU(nf )× SO(4)
Wilson (17) SUV(nf )× SW4 ⊂ SU(nf )× SU(nf )× SO(4)
Chiral (18) SU(nf )× SU(nf )× SW4 ⊂ SU(nf )× SU(nf )× SO(4)

In most cases, a notable exception being the case of nonzero baryon chemical po-
tential, this condition holds.

The determinant detM represents virtual quark-antiquark pairs, also known as
sea quarks. The matrix inverse M−1 is the propagator of a valence quark moving
through a stew of gluons A and sea quarks. Several quark propagators are sewn
together to form hadronic correlation functions, which via Equations 3–5 yield
masses and transition matrix elements. The sea detM poses the largest, and
the propagator M−1 the second largest, computational challenge. The numerical
algorithms become even more demanding as the quark mass is reduced. Lattice
QCD data with unphysically heavy up and down quarks can be extrapolated
to the physical limit guided by chiral perturbation theory (12, 13). This step
removes the cloud of unphysically massive pions and replaces it with a better
(and improvable) approximation to the physical pion cloud.

Because detM and M
−1 require so much computing power, several formula-

tions of lattice fermions are used. As one might anticipate, the computationally
fastest and theoretically cleanest methods are not the same. (If one formulation
were both fastest and cleanest, no one would use anything else.) Each formu-
lation can be characterized by the amount of flavor symmetry retained by the
lattice (Table 1). Staggered fermions are computationally the fastest, but the
flavor group comes in a semi-direct product with the symmetry group of the hy-
percube, SW4, and the total number of species in the continuum limit, for nf
fields, is 4nf . This fermion doubling is not a problem for the propagators M−1

stag.

For the sea, however, one must take (16) [detMstag]
1/4 and appeal to numeri-

cal and perturbative evidence that the rooting yields a local field theory in the
continuum limit (19).

Because of the expense of sea quarks, many lattice QCD calculations have been
carried out with two or fewer (light) flavors. The error entailed in omitting the
strange-quark sea is difficult to estimate, so this review considers mostly results
with 2+1 flavors in the sea. Here 2+1 denotes the strange sea and two more
flavors, for up and down, taken as light as possible. Such simulations made a
breakthrough early in this century (20). Now the first results with the charmed
quark sea, “2+1+1,” are becoming available.

4 Hadron Spectrum

We compute the masses of hadrons not only for a quantitative comparison of QCD
with nature but also to learn how gauge theories generate mass. As Section 6
shows below, hadron masses are much larger than the sum of the masses of
the underlying quarks. The positive binding energy stems from the confining
properties of the gluon field and from the kinetic energy of the quarks.
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Let us begin with the energy in a flux tube between a static quark–antiquark
pair, as a function of their separation r. The lowest energy level of the flux tube
is the potential energy V (r), and the excitations of the flux tube are also infor-
mative. The states are labeled Σ±

g,u,Πg,u,∆g,u, . . ., according to the eigenvalues
of gluonic angular momentum along r and of CP [in the subscript g (u) stands
for (un)gerade, which is German for even (odd)]. The Σ states also carry a super-
script ± denoting the change of sign (or not) of the wave function upon reflection
in the plane containing r; otherwise such reflections relate degenerate pairs.

Figure 1 shows the lowest-lying levels in the SU(3) gauge theory without light
quarks (21). At short distances, the level spacing and ordering is consistent
with asymptotic freedom: V (r), for example, is Coulombic up to logarithmic
corrections. As r increases, the spacing changes, and at a separation of around
2 fm, the level ordering rearranges to that of a string. The level spacing does
not become fully string-like until larger separations (22). The behavior of the
excitations is instructive, because the lowest level, V (r), becomes consistent with
a string at a relatively short distance around 1

2 fm (23). A vivid picture of the
flux tube has it narrowing as r increases, owing to the attraction between gluons,
but the details suggest that the flux tube looks more like a sausage than a string.

One can imagine connecting the ends of the sausage to obtain non-qq̄ states
known as glueballs. Such mesons have no counterpart in the quark model, and lat-
tice gauge theory provides the best (theoretical) evidence that these states do in-
deed exist. Glueball masses with 2+1 flavors of sea quarks show little change (24)
from earlier calculations with no sea quarks (25). In particular, the masses re-
main consistent with the idea, motivated by lattice QCD, that the fJ(1710) is the
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Figure 1: Excitation energies of the chromoelectric field in representation
(“rep”) R between two static sources at separation r, in units of the string tension
σ ≈ (400–440 MeV)2. The lowest energy level EΣ+

g
(r) = V (r) is the heavy-quark

potential, exhibiting Coulombic behavior at short distances and linearly confining
behavior at large distances. The higher excitations also exhibit the level ordering
of electrodynamics at short distances but the level ordering of a string at large
distances. The colors pink, orange, green, and violet stand for decreasing lattice
spacing. Data are from Reference 21.
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lightest scalar glueball (26). The pseudoscalar, tensor, and first radially excited
scalar glueballs are all 800–900 MeV higher than the lowest scalar (24).

Lattice QCD has been used to verify the mass spectrum of quark-model hadrons
within a few percent. Figure 2 shows four broad efforts on the spectrum of
the isopsin-1 light mesons and the isospin-12 and -32 baryons (27, 28, 29, 30, 31).
All these simulations include 2 + 1 flavors of sea quarks, and the error bars in
References 27, 28, 30 reflect thorough analyses of the systematic uncertainties.
A satisfying feature of Figure 2 is that the results do not depend in a systematic
way on the fermion formulation chosen for the quarks. Even the latest results for
the difficult η-η′ splitting are encouraging (32,33,34).

Figure 2 includes predictions for mesons with quark content b̄c (38, 36, 39).
The prediction for the pseudoscalar Bc has been (subsequently) confirmed by
experiment (40,41), whereas the prediction for the vector B∗

c awaits confirmation.
These predictions build on successful calculations of the bb̄ and cc̄ spectra (37,
42,43,44,45), which reproduce the experimental results well.

The most striking aspect of the spectrum is how well it agrees with nature.
The nucleons provide almost all the mass in everyday objects, and their masses
have been verified within 3.5%. Their mass mostly comes, via m = E/c2, from
the kinetic energy of the quarks and the energy stored in the sausage-like flux
tube(s) holding the quarks together.
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Figure 2: Hadron spectrum from lattice QCD. Comprehensive results for
mesons and baryons are from MILC (27, 28), PACS-CS (29), BMW (30), and
QCDSF (31). Results for η and η′ are from RBC & UKQCD (32), Hadron Spec-
trum (33) (also the only ω mass), and UKQCD (34). Results for heavy-light
hadrons from Fermilab-MILC (35), HPQCD (36), and Mohler & Woloshyn (37).
Circles, squares, and diamonds stand for staggered, Wilson, and chiral sea quarks,
respectively. Asterisks represent anisotropic lattices. Open symbols denote the
masses used to fix parameters. Filled symbols (and asterisks) denote results.
Red, orange, yellow, green, and blue stand for increasing numbers of ensembles
(i.e., lattice spacing and sea quark mass). Horizontal bars (gray boxes) denote
experimentally measured masses (widths). b-flavored meson masses are offset by
−4000 MeV.
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5 Chiral Symmetry Breaking

A striking feature of the hadron spectrum in Figure 2 is that the pion has a
small mass, around 135 MeV, whereas the other hadrons have masses more than
five times larger. To understand the origin of the difference, Nambu (1) applied
lessons from superconductivity, noting (four years before quarks were proposed)
that a spontaneously broken axial symmetry would constrain the pion’s mass to
vanish, with small explicit symmetry breaking allowing it to be nonzero.

If the up and down quarks can be neglected, the QCD Lagrangian acquires
an SUL(2) × SUR(2) symmetry, thereby explaining the origin of Nambu’s axial
symmetry. The consequences of spontaneous symmetry breaking were studied
further by Goldstone (46), which led to the formula (47),

m2
π〈ψ̄ψ〉 = 0, (7)

when applied to QCD with massless up and down quarks. The flavor-singlet
vacuum expectation value 〈ψ̄ψ〉 is known as the chiral condensate. If either
factor on the left-hand side of Equation 7 is nonzero, then the other must vanish.

From the earliest days of QCD, most physicists were confident that this the-
ory explained the richness of the strong interactions. Because both QCD and
Nambu’s picture of the pion were considered correct, it was believed that QCD
must generate a chiral condensate. Until recently, however, no ab initio calcula-
tion of 〈ψ̄ψ〉 tested Equation 7. Lattice QCD has now filled this gap (48,49,50):

〈ψ̄ψ〉 = [234 ± 4± 17 MeV]3 (MS scheme at 2 GeV). (8)

Here, the first uncertainty is statistical and the second is a combination of sys-
tematics, and the quark masses have been adjusted to Nambu’s idealization,
mu = md → 0, ms physical (50). In summary, QCD’s symmetries and dynamics
have now been demonstrated to account for the hierarchy between the pion and
the other hadron masses.

6 Standard Model Parameters

The Standard Model (with nonzero neutrino masses and mixing angles) has 28
free parameters:

• Gauge couplings: αs, αQED, αW = (MW/v)
2/π;

• Quark sector: mue
iθ̄, md, ms, mc, mb, mt; |Vus|, |Vcb|, |Vub|, δKM;

• Lepton sector: mν1 , mν2 , mν3 , me, mµ, mτ ; θ12, θ23, θ13, δPMNS, α21, α31;

• Standard electroweak symmetry breaking: v = 246 GeV, λ = (MH/v)
2/2.

Lattice QCD is essential or important in determining the values of eleven pa-
rameters (the first under gauge couplings and all but mt under quark sector).
Lattice field theory (without QCD) is also useful for shedding light on the Higgs
self-coupling λ (51) and the top Yukawa coupling yt =

√
2mt/v (52).

As in Equation 8, this section reports several results in the conventional MS
scheme at a renormalization point µ, such as 2 GeV or the Z boson mass MZ .
MS is the most common renormalization scheme in quantum field theory, because
it is the technically simplest one in perturbative calculations. Readers unfamiliar
with the MS scheme should focus on the consistency and on the relative uncer-
tainty of the results, rather than the details of the scheme’s definition.
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Table 2: Quark masses from lattice QCD converted to the MS scheme and run
to the scale indicated. Entries are in MeV.

Flavor (scale) Ref. (28) Ref. (53) Ref. (54) Ref. (55) Ref. (56)
m̄u(2 GeV) 1.9± 0.2 2.01± 0.14 2.24± 0.35 2.15± 0.11
m̄d(2 GeV) 4.6± 0.3 4.79± 0.16 4.65± 0.35 4.79± 0.14
m̄s(2 GeV) 88± 5 92.4± 1.5 97.7± 6.2 95.5± 1.9
m̄c(3 GeV) 986± 10
m̄b(10 GeV) 3617± 25

6.1 Quark masses and αs

Confinement precludes the direct measurement of quark masses. Instead, the
masses in Equation 1 must be determined from closely associated measurable
properties of hadrons. The nf bare quark masses are adjusted until nf hadron
masses of suitable flavor agree with experimental measurements. Table 2 shows
four sets of results, following conversion to the MS scheme described above. The
results in the first, third, and fourth columns are completely independent, em-
ploying different formulations for sea quarks and different treatments of electro-
magnetic effects. The results in the second column are derived from mass ratios
[2ms/(md +mu) = 27.3± 0.3 and mu/md = 0.42± 0.04] underlying those in the
first column, combined with precise values of the ratio mc/ms = 11.85±0.16 (53)
and m̄c (57).

These results are remarkable for at least two reasons. First, the up and down
masses are very small, approximately four and nine times the electron mass,
respectively. Quark masses arise from interactions with the Higgs field (or some-
thing like it). Thus, this sector is not the origin of much of the mass of everyday
objects. Second, mu, although very small, is nevertheless significantly far from
zero. This outcome is interesting because if mu = 0, then the additional sym-
metry of the Lagrangian would render θ̄ unphysical, obviating the strong CP
problem (7). (A subtlety could arise from a nonperturbative additive correction
to mu, but it is probably too small to alter this conclusion.)

The heavy charmed quark and bottom quark masses can be determined along
the same lines, but the most accurate results come from computing quarkonium
correlation functions and taking their continuum limit (58). These functions give
spacelike information on the same function measured in the timelike region in
e+e− → cc̄ or e+e− → bb̄. Perturbation theory to order α3

s (59) can then be used
to extract the heavy-quark masses and αs (57). This approach yields the results
in the fifth column of Table 2, which are in nearly perfect agreement with the
corresponding determinations from e+e− collisions (60).

Lattice QCD provides excellent ways to determine the gauge coupling αs =
g2/4π. In lattice gauge theory, the bare coupling g20 is an input. Alas, for many
lattice gauge actions, perturbation theory in g20 converges poorly (61), obstructing
a perturbative conversion to the MS or other such schemes. Two other strategies
have been adopted to circumvent this obstacle. One is to compute a short-
distance lattice quantity—such as a Wilson loop—and reexpress perturbation
theory for the Monte Carlo results in a way that eliminates g20 in favor of a
renormalized g2 (61, 62). The other is to compute a short-distance quantity
with a continuum limit, and then apply continuum perturbation theory. The
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Table 3: Values of αs(MZ) (in the MS scheme) from lattice QCD and an average
of determinations from high-energy scattering and decays. An update to the
values in the first two rows can be found in Reference 56. The central values and
error bars from References 67,68 have been symmetrized to ease comparison. In
principle, “nature’s sea” includes non–Standard Model colored particles.

αs(MZ) Observable Sea formulation Ref.
0.1174± 0.0012 Charmonium correlator 2+1 asqtad staggered (57)
0.1183± 0.0008 Small Wilson loops 2+1 asqtad staggered (66)
0.1197± 0.0013 Schrödinger functional 2+1 improved Wilson (67)
0.1185± 0.0009 Adler function 2+1 overlap (68)
0.1200± 0.0014 Ghost-gluon vertex 2+1+1 twisted Wilson (69)
0.1186± 0.0011 Scattering, τ decay, etc. Nature’s sea (70)

quarkonium correlator used for mc and mb is an example (59). Other examples
include the Schrödinger functional (63) and the Adler function (64,65).

Results from several complementary lattice QCD methods (57, 66, 67, 68, 69)
are collected in Table 3 and compared with an average of determinations from
high-energy scattering and decays (70). There is excellent consistency among
the results, not only with different discretizations of the determinant for sea
quarks but also when the charmed sea is included (69). An important source
of uncertainty is the truncation of perturbation theory, including strategies for
matching to the MS scheme, and running to scale MZ . In the example of the
small Wilson loops, an independent analysis of the data from Reference 66 has
been carried out; this analysis found αs(MZ) = 0.1192±0.011 (71), which should
be compared with the second line of Table 3.

The agreement between the lattice QCD and perturbative QCD results for αs,
mc, andmb is especially compelling because QCD is the union of the quark model
of hadrons and the parton model of high-energy scattering. This consistency is
evidence that the QCD of hadrons and the QCD of partons are the same.

6.2 Flavor Physics

As mentioned in Section 2, the quark masses arise from the electroweak interac-
tions. In a basis where the mass matrix is diagonal, the W boso couples to all
combinations of (u, c, t, . . .) ⊗ (d, s, b, . . .)T quarks. Along with the SU(2) gauge
coupling, the udW vertex carries a factor Vud, and similarly for all other combi-
nations. As a change of basis (from the weak interaction basis to the mass basis),
the Cabibbo–Kobayashi–Maskawa (CKM) (72,73) quark-mixing matrix V is uni-
tary. After considering global symmetries of the gauge interactions, one sees that
the CKM matrix has fewer parameters than a generic unitary matrix does. For
three generations, three mixing angles and one CP -violating phase remain, and
a convenient choice consists of |Vus|, |Vub|, |Vcb|, and arg V ∗

ub.
Lattice QCD calculations play a key role in flavor physics. The phase and, ex-

cept for |Vtb|, all magnitudes of the CKM matrix can be accessed via processes for
which the corresponding lattice-QCD calculations are under good control. (Other
processes that do not need lattice QCD also provide information on the CKM
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matrix.) A representative set of calculations and their utility is illustrated by

V =



























|Vud| |Vus| |Vub| arg V ∗
ub

π → ℓν K → ℓν B → τν 〈K0|K̄0〉
n→ pe−ν̄ K → πℓν B → πℓν

|Vcd| |Vcs| |Vcb|
D → ℓν Ds → ℓν B → Dℓν

D → πℓν D → Kℓν B → D∗ℓν

|Vtd| |Vts| |Vtb|
〈Bd|B̄d〉 〈Bs|B̄s〉 (no tq̄ hadrons)



























. (9)

These leptonic and semileptonic decays (first two rows) or meson-antimeson os-
cillations (phase and third row) have one hadron in the initial state and one (or
none) in the final state. Thus, all of these flavor-changing amplitudes can be com-
puted in lattice QCD via Equations 4 or 5. Semileptonic transition form factors
for K → πℓν (74,75), B → πℓν (76,77), and B → D∗ℓν (78) are sensitive to the
mixing angles, and K0-K̄0 mixing (79,80,81,82) is sensitive to the CP -violating
phase. Together with calculations of D meson decays (83, 84, 85) and B0

(s)-B̄
0
(s)

mixing (86), the full suite of lattice QCD calculations overdetermines the CKM
matrix and, thus, tests for consistency. The semileptonic D decays are considered
crosschecks. Taking |Vcd| and |Vcs| from CKM unitarity (which is very precise),
one finds that lattice QCD calculations of the kinematic distributions (83) and
the normalization of the rate (84,85) agree with results from several experiments.

Non-SM particles could spoil this picture, which is why it is interesting to test
it in detail. With a fourth generation of quarks and leptons, the 3 × 3 subma-
trix generically would not be unitary. If other particles, such as supersymmetric
partners of the known particles, change quark flavor, then the SM relation be-
tween a flavor-changing process and V is spoiled. The off-diagonal elements are
small—|Vus| ∼ 0.2, |Vcb| ∼ 4 × 10−2, and |Vub| ∼ 3 × 10−3—so it is not out
of the question for (widely anticipated) TeV-scale particles to make detectable
contributions.

During the first decade of the twenty-first century, all simple lattice-QCD cal-
culations that are pertinent to the CKM matrix were carried out with 2+1 sea
quarks. In most cases, more than one collaboration has published results, and,
in many cases, the literature covers more than one fermion formulation for the
quarks. The calculations most directly connected to determining the CKM pa-
rameters have been combined—with an eye to correlations in the errors—in Ref-
erence 87. (Updates are available at http://latticeaverages.org/).

Despite the broad agreement between flavor-physics measurements and the
Standard Model, some tension appears in global fits to the four CKM parame-
ters (88). Some mild discrepancies also arise in a few isolated processes, and here
we consider two leptonic decays in which lattice QCD plays a key role.

Let us begin by noting that the semileptonic and leptonic determinations of
|Vus|, which rely on the matrix elements of References 74,75 and 90,91,92, respec-
tively, are completely compatible (89). The vector component of the W boson
mediates the former, and the axial current mediates the latter. Because these
determinations are compatible, nothing other than the SM W boson with its
V −A coupling is needed to account for these decays.

The present status of semileptonic and leptonic determinations of |Vub| is not
so tidy. Combining lattice QCD for the B → πℓν form factor (76, 77) with

http://latticeaverages.org/
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measurements from BaBar (93) yields |Vub| = (2.95±0.31)×10−3 ; with Belle (94),
|Vub| = (3.43 ± 0.33) × 10−3. The average taken here is |Vub|B→πℓν = (3.19 ±
0.32) × 10−3. Combining lattice QCD for the B meson decay constant (86, 95)
with the world average of the rate for B+ → τ+ν (96), however, suggests that
|Vub|B→τν = (4.95 ± 0.55) × 10−3, which deviates by 2.8σ from |Vub|B→πℓν . This
discrepancy could be explained if another particle (or particles) were to mediate
the decays with a coupling different from theW boson’s V −A. Examples include
a charged Higgs boson (97,98) and a right-handed vector current (99). The plot
thickens when one considers inclusive charmless semileptonic B decays, which are
mediated by all possible currents. These decays imply a value of |Vub| in between
those from the two exclusive methods.

The history of results on theDs → µ+ν andDs → τ+ν decays suggests caution,
however. In 2008, the measured branching fractions exceeded the SM predictions
by nearly 4σ (Figure 3). This discrepancy relies on the decay constant fDs from
lattice QCD (100,90). Through the use of the same methods as for the π and K
decay constants (90, 101), the Ds decay constant can be computed to 1–2%. At
the time, some experimenters asserted that either the lattice QCD calculations
were wrong or that New Physics mediated the decay. For example, the excesses of
Ds → ℓ+ν could be due to leptoquarks (102); a few-percent amplitude could be
constructively interfering. (Leptoquarks are hypothetical particles with lepton
and quark quantum numbers.) As more measurements came in, however, the
discrepancy softened, and it is now only 1.6σ. Although the lattice QCD average
of the Ds decay constant has increased by 8 MeV, the experimental average has
decreased by 18 MeV. The early measurements fluctuated upward; perhaps the
same holds for B → τν.
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Figure 3: Comparison between values for fDs since 2005. The green line (right
axis) shows the discrepancy in σ. The black line shows the running average (with
±1σ error band in gray) of 2+1-flavor lattice QCD calculations from Fermilab-
MILC (100, 95), HPQCD (90, 101), and PACS-CS (103). Black filled (open)
points stand for published (preliminary) results. [The two-flavor cyan point from
ETM (104) is not included in the average.] The red line shows the running
average (with ±1σ error band in yellow) of measurements from BaBar, Belle,
and CLEO-c (96). Orange (red) points stand for results from BaBar and Belle
(CLEO-c). Updated from Reference 105.
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Table 4: Table of scalar-density matrix elements. The first and fourth rows use
2 flavors of sea quarks; the others use 2+1. Entries are in MeV.

Method σu+d σs Reference
πN scattering ⊕ baryon octet masses 45± 8 122 ± 143 (107,109)

64± 7 378 ± 135 (108,109)

Lattice QCD Feynman–Hellmann 53± 2+21
− 7 (111)

Lattice QCD MN χPT 47± 8± 3 31 ± 15± 4 (112)
Lattice QCD Feynman–Hellmann 59± 7± 8 (113)
Lattice QCD matrix element 30 ± 8± 21 (114)
Lattice QCD Feynman–Hellmann 39± 4+18

− 7 34± 14+28
−23 (115)

Lattice QCD Feynman–Hellmann 31± 3± 4 71± 34± 59 (116)

7 Nucleon Matrix Elements, Dark Matter, and the LHC

Two of the most compelling questions facing particle physics are the origin of
electroweak symmetry breaking and the composition of dark matter. The exper-
iments developed to address them rely on the familiar proton and neutron. The
Large Hadron Collider (LHC) collides pp, and the Tevatron pp̄, and detectors
buried deep underground hope to observe weakly interacting massive particles
(WIMPs) scatter of the protons and neutrons in nuclei. To interpret the results
of these experiments, it is helpful to calculate certain matrix elements of the
nucleon (106).

Let us start with WIMP-nucleon scattering. Each quark’s contribution to the
cross section is proportional to a matrix element known as the sigma term,

σq = mq〈N |q̄q|N〉 = mq
∂MN

∂mq
, (10)

where mq is the quark mass, and MN is the nucleon mass. All quarks q in
the nucleon can contribute, including virtual quarks such as s and c. The partial
derivative should be taken with the other nf QCD parameters held fixed. Usually
the light quarks are combined into the isospin-singlet

σu+d = 1
2(mu +md)〈N |(ūu+ d̄d)|N〉. (11)

(Beware of factors of 2 in the definitions of these and similar quantities, sometimes
denoted Σ, in the literature.) For WIMP detection, σu+d and σs are especially
important, because virtual pairs of heavier quarks are far too uncommon inside
nucleons.

Until recent lattice QCD calculations became available, the light quark sigma
term was extracted from πN scattering, with the help of chiral perturbation
theory (χPT) (107, 108). As shown in the first two rows of the σu+d column of
Table 4, the extraction depends more on assumptions than on the experimental
data. To estimate σs, one uses information from the baryon octet masses (109).
Unfortunately, this information must be subtracted from σu+d, which renders σs
rather unstable. There is a pressing need to improve both matrix elements (110).

Equation 10 suggests two methods to compute σq in lattice QCD: either from
a three-point function, as in Equation 5, or through study of the mass depen-
dence of the nucleon mass MN . The latter is known as the Feynman–Hellmann
theorem, and here one can either reweight the Monte Carlo ensemble to take
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Figure 4: Nonsinglet average momentum fraction 〈x〉u−d vs. m2
π from LHP (118),

RBC & UKQCD (119), and ETM (120). The last has 2+1+1 flavors of sea
quarks, the others have 2+1 flavors. The black squares show two fits (121, 122)
to experimental data; other recent fits of this kind fall between these two (122).

the derivative locally or study the chiral extrapolation to obtain a global handle
on the derivative. Table 4 compiles several recent results. From a quantitative
perspective, it seems that the results are still settling down, although they tend
to favor lower values of σu+d. More strikingly (and self-consistently with low
σu+d), the results for σs substantially contradict the high values used in WIMP
phenomenology. Even if these results are not yet as mature as those reported in
Sections 4, 5, and 6, they seem to give a more stable picture than the non-lattice
estimates. Further work and promising new methods (117) should clarify the
sigma terms soon.

In pp or pp̄ collisions, the essential long-distance ingredient in computing cross
sections are the moments of the parton distribution functions. These moments
are given by matrix elements of local operators, similar to the q̄q in Equation 10
but with different Dirac structures, such as γµ and γµγ5, and derivatives to
pull out higher powers of the momentum fraction. Figure 4 shows some recent
lattice QCD results for the nonsinglet average momentum fraction 〈x〉u−d as a
function of simulation m2

π (118, 119, 120), compared with two phenomenological
results (121, 122). The latter are obtained by fitting experimental data, which
exist over a large but limited range of x, to reasonable parameterizations. In
principle, the lattice QCD moments add extra information, but the status of
the chiral extrapolation may preclude this step at this time, even though some
functional forms lead to results (118,119) that agree with the fits to experiment.
In this regard, earlier work with 2 flavors of sea quarks yielded confusing results.
In a few years, the low moments of quark densities from 2+1- and 2+1+1-flavor
simulations should become good enough to incorporate into the traditional fits of
experimental data. For collider phenomenology, however, the real challenge for
lattice QCD is to compute similar moments of the gluon density, which are less
well constrained by low-energy experiments.
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8 QCD Thermodynamics

The previous sections consider isolated hadrons at zero temperature. Soon after
the Big Bang, however, the universe was much hotter than it is now. In neutron
stars, for example, the baryon density is much higher than in normal nuclear
matter. These phenomena have motivated the study of the thermodynamics of
QCD. Even within lattice gauge theory, thermodynamics is a vast subject (123,
124), so this review touches only on some of the more fascinating aspects.

Thermodynamics starts with thermal averages in the canonical ensemble

〈•〉 =
Tr

[

• e−Ĥ/T
]

Tr e−Ĥ/T
, (12)

where T is the temperature, and the traces Tr are over the Hilbert space of the
QCD Hamiltonian Ĥ. In fact, the average on the left-hand side of Equation 12
is precisely that of Equation 2; the time extent N4 specifies the temperature
T = (N4a)

−1. The eigenstates of Ĥ, which are single hadrons and multiparticle
states composed of hadrons, do not change with T , but as T increases, the vacuum
no longer dominates the way it does in Equations 3–5, and multihadron states
begin to play a role in the thermal average.

The simplest observables are quantities suach energy, pressure, entropy den-
sity, and order parameters sensitive to symmetry breaking. The thermal state
can either restore a spontaneously broken symmetry of the vacuum or be a state
of broken symmetry itself. Of course, the (approximate) symmetry of the Hamil-
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Figure 5: Order parameters for deconfinement (bottom) and chiral symmetry
restoration (top), as a function of temperature. The physical temperature T =
(Nτa)

−1, where a is the lattice spacing and Nτ = N4. Agreement for several
values of Nτ thus indicates that discretization effects from the lattice are under
control. Data are from Reference 126.
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tonian remains intact. Figure 5 shows order parameters for deconfinement and
chiral symmetry restoration, as the temperature increases from normal hadronic
matter to a phase known as the quark-gluon plasma. Both order parameters
change dramatically for a temperature around 145–170 MeV (125,126), but nei-
ther, especially deconfinement, exhibits the sharp change characteristic of a phase
transition. Studying a whole suite of thermodynamic observables confirms that
the transition is a smooth crossover (127, 128). This result came as a surprise,
and the next two paragraphs explain why.

The crossover means that as the early universe cooled, hot matter gradually
became more and more like a gas of distinct hadrons. With a first-order phase
transition, on the other hand, bubbles of the hadronic phase would have formed
inside the quark-gluon plasma. Without a real phase transition, the quark-gluon
plasma is not necessarily a fluid of quasi-free quarks and gluons. The eigenstates
in Equation 12 remain color singlets, but a thermal medium can be qualitatively
different. First, thermal fluctuations encompass states with many overlapping
hadrons, so color can propagate from one hadron to the next, as if deconfined.
Second, the thermal average applies nearly equal Boltzmann weights to states of
both parities, so chiral symmetry can be restored in the thermal average, even
though the vacuum breaks it.

The nature of the QCD phase transition is influenced by the physical values of
the up, down, and strange quark masses. For vanishing quark masses, the tran-
sition would be first order, but as the masses are increased, the strength of the
transition diminishes. As depicted in Figure 6a, the physical quark masses (Ta-
ble 2) are just large enough to render the transition a crossover. If the light quark
masses—crucially ms—were around half their physical size, the universe would
have cooled through a first-order transition. Before lattice QCD established these
results, the conventional wisdom was that the quark masses are somewhat larger
than shown in Table 2, yet small enough to remain in the first-order basin of
massless quarks.
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hadrons

quark-gluon plasma
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Figure 6: QCD phase diagrams. (a) The ms-
1
2(mu + md) plane at (µ, T ) =

(0, Tc), showing the order of the transition. The shaded regions at very small
and nearly infinite masses are first order; the red line shows the physical ratio of
2ms/(mu+md). (b) The µ-T plane, showing the crossover at small µ determined
from lattice QCD. The neutron star (denoted n⋆) and other phases are expected,
but lattice QCD is not yet in a position to provide useful information.
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At nonzero baryon density (chemical potential µ 6= 0), the fermion determinant
becomes complex, which is an obstacle to importance sampling. This restricts
lattice QCD calculations to small µ. It is thought that the transition becomes
first order for µ ∼ few 100 MeV (Figure 6b) (129), but the matter is not yet
settled (130).

9 Summary and Outlook

The topics discussed above demonstrate that we have learned a great deal in this
century about QCD from lattice gauge theory. The twenty-first century is still
young, and the prospects for learning more are bright.

Although the mass spectrum of the lowest-lying hadrons has been well verified,
it will be interesting to extend the calculations to excited states (131, 132) and
even to small nuclei such as the deuteron (133) or the H dibaryon (134, 135).
Beyond QCD, one may wonder whether nature uses gauge theories to generate
quark, lepton, and weak boson masses (136).

Most of the calculations related to flavor physics are entering an industrial
phase, where the objective is higher and higher precision. An exception is the
measurement of direct CP violation in the kaon system. This calculation requires
a two-pion final state, and although the formalism for handling this state has long
been available (137), only now have K → ππ amplitudes become feasible (138,
139). These finite-volume techniques are related to methods (140) for computing
scattering lengths (141,142), which have many applications in hadronic physics.

Appendix: Tools

Research in lattice QCD requires computer time and software. Through several
efforts around the world, these needs pose lower obstacles than ever before. Sev-
eral groups have made documented software available so that new programs can
be modeled after existing code, rather than being built from scratch. Further-
more, many groups make ensembles of lattice gauge fields available, principally
via the International Lattice Data Grid (ILDG) (http://www.usqcd.org/ildg/).
In exchange for a suitable citation of an article describing the content of the en-
sembles, anyone can use these simulation data for his or her own physics analyses.
In many cases, even more ensembles are available from collaborations with newer
ensembles under generous terms: Most of these collaborations have some core
physics analyses but are happy if the expensive simulation data are mined for
more results.

The ILDG has portals in Australia (http://cssm.sasr.edu.au/ildg/), Japan
(http://ws.jldg.org/QCDArchive/), continental Europe (http://hpc.desy.de/ldg/),
the United Kingdom (http://www.gridpp.ac.uk/qcdgrid/), and the United
States (http://www.usqcd.org/ildg/). The technical underpinnings are de-
scribed in Reference 143. Further ensembles are available from the Gauge Con-
nection (http://qcd.nersc.gov/) and the QCDOC Gauge Field Configuration
Archive (http://lattices.qcdoc.bnl.gov/).

Publicly available software can be obtained from the USQCD Collaboration
(http://www.usqcd.org/usqcd-software/). Newcomers should start with one
of the applications packages: chroma, cps, milc, or FermiQCD. A useful
tutorial on this software has been put together by Joó (144; contains slides only).

http://www.usqcd.org/ildg/
http://cssm.sasr.edu.au/ildg/
http://ws.jldg.org/QCDArchive/
http://hpc.desy.de/ldg/
http://www.gridpp.ac.uk/qcdgrid/
http://www.usqcd.org/ildg/
http://qcd.nersc.gov/
http://lattices.qcdoc.bnl.gov/
http://www.usqcd.org/usqcd-software/
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Two kinds of computing are important to lattice gauge theory, capability and
capacity. One needs access to computers with the greatest capability—those
able to run large-memory jobs with huge appetite in CPU time—to generate
the ensembles of lattice gauge fields. On these ensembles an analysis consists
of a huge number of small-to-medium computing demands; this step requires
computers with high capacity. Many university groups have access to computers
of sufficiently high capacity to analyze the publicly available ensembles.
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115. BMW, Dürr S, et al., Phys. Rev. D85:014509 (2012), 1109.4265.
116. QCDSF and UKQCD, Horsley R, et al., Phys. Rev. D85:034506 (2012),

1110.4971.
117. ETM, Dinter S, et al., (2012), 1202.1480.
118. LHP, Bratt JD, et al., Phys. Rev. D82:094502 (2010), 1001.3620.
119. RBC and UKQCD, Aoki Y, et al., Phys. Rev. D82:014501 (2010), 1003.3387.
120. ETM, Dinter S, et al., PoS LATTICE2010:135 (2010), 1101.5540.
121. Martin AD, Stirling WJ, Thorne RS, Watt G, Eur. Phys. J. C63:189 (2009),

0901.0002.
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125. Wuppertal-Budapest, Borsányi S, et al., JHEP 1009:073 (2010), 1005.3508.
126. HotQCD, Bazavov A, et al., Phys. Rev. D85:054503 (2012), 1111.1710.
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